
/
I

!::~;) --.,_ __
·~··

0
Ln
0')

-~·

AGARD lECTURE SERIES N0.143

Fault Tolerant Hardware/Software
Architecture for

Flight Critical Function
OTIC

~E•-EcTED·
'I "N!YV 2 6 1!l8S

22 019

..

. ~

' ...;
~~r ~

-·~
-,5f1

·I:'
f·
:N•

f
I

'
1:

--~
'!;
~ 'f;

t

AGARD-LS- 143

NORTH ATLANTIC TREATY ORGAN IZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE LATLANTIQUE NORD)

AGARD LECTURE SERIES No. 143

FAULT TOLERANT HARDWARE/SOFIrWARE ARCHITECTURE

FOR FLIGHT C! TICAL FUNCTON

the GudneadControl PnladieCsuton andEcag rgam of ofR peene

on 12 Otobr 185 n Ewars, SA,17-18 October 1985 in Copenhagen, Denmark,
ad222October 1985 in Athens, Greece.

-"wane."

• *1

THE MISSION OF AGARI)

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and

technology relating to acrospace for the following purposes:

- Exchanging of scientific and technical information"

- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture-

- Improving the co-operation among member nations in aerospace research and development:

- Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the field of
aerospace research and development;

- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in
connection with research and development problems in the aerospace field:

- Providing assistance to member nations for the purpose of increasing their scientific and technical potential:

- Recommending effective ways for the member nations to use their research and development capabilities for the
common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior
representatives from each member nation. The mission of AGARD is carried out through the Panels which arc composed of
experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications
Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through
the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published September 1985

Copyright 0 AGARD 1985
All Rights Reserved

ISBN 92-835-1510-2

Printed by Specialised PrintingServices Limited
40 Chigell Lane, Loughtmn, Essex IGIO37Z

-!. ., .

LIST OF SPEAKERS

Lecture Series Director: Mr G.L.Hartmann
Honeywell Inc. MN 17-2332
Systems and Research Center
Aerospace and Defense Group
2600 Ridgway Parkway
P.O. Box 312
Minneapolis, Minnesota 55440
USA

SPEAKERS

Dr T.Anderson Mr G.M.Papadopoulos
Computing Laboratory Massachusetts Institute of Technology
University of Newcastle Upon Tyne Dept. of Electrical Engineering and
Claremont Tower, Claremont Road Computer Science
Newcastle Upon Tyne NE I 7RU 545 Technology Square
UK Cambridge, MA 02139

USA
Mr H.Belmont
Engineering Specialist Mr D.R.Powell
Northrop Aircraft Co. Charge de Recherche au CNRS
I, Northrop Avenue d'Analys;e des Systemes
Hawthorne, CA 90250 CNRS
USA 7. Av. du Colonel Roche

31077 Toulouse CEDEX
Dr W.Heimerdinger France
Honeywell SRC - Computer Sciences
260 Ridgeway Parkway (MN 17-235 1)
Minneapolis, MN 55440
USA

Mr A.D.Hills
Engineering Manager Ac-ce., For
Flight Controls Division
GEC Aviorics Limited I,T13 CPA&I
Airport Works [IC TAB
Rochester, Kent MEI 2XX U.nannounced L1
UK Justficajon

By
Dist, ibution I

Availability Codes

Avail and/or
Dist Special

. i it

3

ra," . 1J
"-I •

[_ ..-.

·•·

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

CONTENTS

Page

LIST OF SPEAKERSi

Reference

Introduction/Overviews
FAULT TOLERANT HARDWARE/SOFTWARE ARCHITECTURES FOR
FLIGHT CRITICAL FUNCTIONS

by G.L.Hartmann I

DIGITAL ELY-BY-WIRE I XPERIENCE
by bA.D.Hmils 2

-REDUNDANCY NANAGEMENT O'F SYNCHRONOUSXND ASYNCHRONOUS SYSTEMS
by G.M.Papalopoulos 4*'- 3

SOFTWARE FAULT TOLERANCE EXPERIMENTS
~by T.Andlerson anP.A.Barrett 4

-,CAN D)ESIGN FAULTS BE TOLERATED?
" Ky T.Ander~on 4A

DEPENABLE VONIC DATA TRANSMISSION)
Sby D.R.PoweNf and J.C.Valadir 5

MULTI-COMPUTER kAULT TOLERANT SYSTEMS USING ADA
by W.Llleimerdinger 's- ~6

DESIGN I SUES K~ DATA SYNCHRONOUS SYSTEMS,
19 by G.Papaopslos A. 1 "1 7

DIGITAL FAULT-TOLERANT FLIGHT ACTUATION SYSTEMS
Aby H.Belmont 8

DESIGN VALIDATION 9F FLY-BY-WIRE FLIGHT CONTROL SYSTEMS,
by G.E.Hartmann, Ji.E.1AII, Jr and E.R.t1ang '9

BIBLIOGRAPHY B

V~ .-

/'I

I-I

INTRODUCTION TO

LECTURE SERIES NO. 143
FAULT TOLERANT HARDWARE/SOFTWARE ARCHITECTURES FOR FLIGHT CRITICAL FUNCTIONS

Gary L. Hartmann

Honeywell Inc.

Systems and Research Center
2600 Ridgway Parkway P.O. Box 312
Minneapolis, Minnesota USA 55440

Modern weapon systems, driven by escalating performance demands, are becoming complex and
sophisticated. Demands for higher accuracy, improved reliability/survivabiiity, all-weather
operation, and more automation are placing Increased emphasis on the control function. Nowhere is
this Increased emphasis more evident than in the control functions required In advanced aircraft
systems. Due to the expanded role of automation many functions are becoming flight-critical (i.e.,
loss of this function is catastrophic).

Flight critical architectures are more complex than fault-tolerant computers. In addition to
airborne computers, overall reliability depends on proper design and management of:

o Sensors and their interfaces

0 Actuation elements
o Data communication among the distributed elements

Previous NATO-AGARD publications have dealt with related aspects of this subject. Lectures Series
No. 109 [reference 1) discussed redundancy management aspects of flight control with some detail on
sensor management and analytical redundancy techniques. ACARD publications such as reference 2
cover areas related to integrity In electronic flight control systems. This lecture series covers
experience with flight tested fly-by-wire systems as well as issues in redundancy management of
synchronous and asynchronous systems. It specifically addresses software fault tolerance,
actuation fault tolerance, reliable data communications, and multi-computer operation using the Ada
language.

First Day

The first paper presents a description of two recent GEC Avionics systems:

o A310 Slats and Flaps Control System
o Jaguar FBW Demonstrator Flight Control System

Particular reference is made to the architectures of the computers and embedded software. The
system design requirements, especially those relating to integrity and availability, are
presented. Emphasis will be placed on the reasons for selecting dissimilarity, as an
implementation philosophy, for the A310 system, as against the multiple similar elements in the
Jaguar architecture.

The paper provides a brief description of the design and development programs for the two computer
units with emphasis on lessons learned, especially in the software areas. The aspects of the
system Involved with maintainability and reliability are detailed and current in-service experience
discussed. Conclusions highlight lessons learned from these successful fly-by-wire programs.

The second paper addresses a f:undamental Issue In managing red;ndany elements -- should the
redundant channels be synchronized or allowed to run asynchronously? While asynchronous systems
may initially appear attractive due to the "uncoupling" o the channels, the cross-channel
Interactions are much greater than what might be expected. Both synchronous and asynchronous
systems share the burden of cross-channel consistency maintenance, the requirement that Inputs and
internal states are not allowed to diverge. In fact, consistency maintenance often dominates the
design process In a correctly designed system. In asynchrono.us systems consistency maintenance
takes the form of cross-channel equalization along with techniques for handling discrete changes in
operating mode.

Consistency maintenance and resoultion techniques are presented for both types of systems. The
clas oft synchronous systems are turther decomposed Into clock synchronous and data synchronous.

*The relative strengths and merits of all three approaches are contrasted. It is concluded that,
based on the increasing complexity of future systems, synchronous sXstems will be preferable.

The third paper will present a case for the adoption o design-fault tolerant techniques in
practical software systems. Fault toleranoe has an established role in detecting and making
component faults in hardware systems, and is being advocated as a defense against design
deficiencies which can plague software.

- -- -- z--mm-L ___

K

A critical application area for computer systems is that of real-time control.(e.g., in avionisc).
Strong support for the utility and effectiveness of software fault tolerance in these systems is
provided by the results of an experimental project at the University of Newcastle upon Tyne.
Techniques were demanstrated with a realistic implementation of a control system. Reliability data
was collected by rinning this system in a simuilated tactical environment for a variety Of action
scenarios. Analysis of the data showed that reliability was significantly enhanced by the -ise of
software flt tolerance.

The fourth paper addresses information transfer in flight criti2al systems. First-generation
avionic data transmission systems (MIL-STD-1553, ARINC 429, GAM-T-1O1 (Digib;is)) were contemporary
to what have now become known as local area networks. They were mainly motivated by the desire to
decrease the amount of wiring ised for equlipment interconnection. All of these systems are
relatively slow by modern standards and featire little or no fault-tolerance featAres (all use
centralized control).Since 1976, the Dependable Compiting System Design and Validation group at
LAAS has been engaged in two research projects concerned with architectires and protocols for the
next generation a' avionic data transmission systems. The increased reliance on digital techniques
in present-day aircraft, will require order-of-magnituide higher data rates and improved
dependability.

This paper presents several techniques for realizing multiple path broadcast media along with
fuilly-decentralized control protocols. Specially-developed Carrier Sense Multiple Access (CSMA)
techniques featuring low error latency and station a;utonomy while ensuaring the bouanded access times
required of real-time systems are described.

The first day of the lecture series concludes with part I of a paper on the ;use of the Ada
programming language In flight critical applications. Ada has been mandated as the programming
language to be used for future U.S. Department of Defense embedded computer applications. It was
designed primarily for embeddci computer system applications, and Incorporates a number of features
to enhance program clarity and to improve error containment.

Second Day
The second day of this lect;ire series begins with a paper addressing design issles In data
synchronous systems.

In data synchronous systems, the o;itputs of all correctly operating redundancy channels are
guaranteed to bit-for-bit agree, independent of whether the channels are clock or frame
synchronous. Data synchronouis systems offer a general form of fault tolerant processing capable of
correctly supporting a very general class of programs.

Using simplified dataflow models, the various aspects of the design of correct data synchronous
systems are examined in detail. These Include: Source consistency, the requirement that all
correctly operating channels receive precisely the same inputs. Task synchronization, the problem
Of keeping the time skew between channels within predetermined bounds, as well system
initialization, sparing, and transient recovery. The ;unsolved problem of latent faults is also
presented along with the need for self-test heuristics. Sequential fault tolerant and parallel
fault tolerant approaches are contrasted for systems requiring protection from multiple faults.
Both hardware and software solutions to these problems are given, emphasizing system performance
and economy.

The next paper address the important (and sometimes neglected) interface with airc raft actuation
systems. Digital technology has effectively been applied to the computational aspects of flight
control systems but must interface with traditionally analog power elements (e.g., hydraulic servo
actuators). To evaluate this interface, the flight control actuation subsystem was defined in
terms of three equipment elements (control processor, servo processor and servo actuator complex)
and their communication interfaces.

A set of design issues were identified with respect to these elements. These issues included
functional task assignments and physical locations. In addition, requirements for high temperature
electronics, feasibility of digital mechanization, and fault detection/redundancy management were
design considerations. Of the candidate flight control system configurations studied, one which
provided the highest potential for fault tolerance was a triplex, active-on-line system with
self-checking compater pairs in each channel for control law and servo actuator processing. The
latter set was located at each actuator and was connected to all contol law processors by means of
a digital serial data bus, thus creating a voting plane at the actuator.

The next paper presents a methodology for validating the functions and reliability of a fly-by-wire
system. Recommendations for using finite state machines to make the System Specification precise
and complete are made. Examples are drawn from several flight control designs to lllistrate the
use of finite state machines.

In validation of system reliabilty, fault tree analyses is combined with a finite state
representation of the redundancy management to establish system level reliability tests. This
method is illustrated using design trades from a distributed multi-computer architectutre.

The final paper is part II of the use of Ada in multiple computer systems. Two ongoing projects at
Honeywell's Systems and Research Center illustrate the range of options in distributing Ada
software on multiple computers.

--

"90

REFERENCES

I (1) AGARD Lectiire Series 109, Athens, Rome, London. October 13-21 1980

(2) Integrity in Electronic Flight Control Systms, AGARbograph No. 224I, PuIblished April 1977.

I4

- -- 7

21I

DIGITAL FLY-BY-WIRE EXPERIENCE

Mr. A.D. Hills
Engineering Manager

Flight Controls Division
GEC Avioncs Ltd

Airport Works, Rochester,
Kent, England.

SUMMARY

A description of two recent GEC Avionics (GAy) systems is included

I) A310 Slats and Flaps Control System

2) Jaguar FBW Demonstrator Flight Control System

Particular reference Is made to the architecture of the computers and embedded software.

Data is included on the two different system design requirements, especially those
relating to integrity and availability. Emphasis is placed on the reasons for selecting
dissimilarity, as an implementation philosophy, for the A310 system, as against the
multiple similar Jaguar demonstrator architecture.

Tie paper then provides a brief description of the design and development programmes for
the two computer units with emphasis on lessons learned, especially in the software
areas.

The aspects of the system and computer design involved with maintainability and
reliability are detailed and Lurrent in-service experience discussed where applicable.

Conclusions are drawn particularly on dissimilarity, hJghlighting lessons learned from
these successful FBW programmes.

A potential method of providing software fault tolerance within a dissimilar
implementation is discussed and preliminary results of a GEC research programme in this
area provided.

INTRODUCTION

The two recent GEC Avionics Fly-by-Wire (FBW) programmes addressed in this paper were
conceived for two very different system and integrity requirements.

une, the Jaguar FBW system, was designed and developed as a production standard
demonstrator control system to investigate and prove advanced control concepts for future
fighter aircraft. The A31O Slat and Flap system however, is a FBW implementation of a
secondary flight control system for a commercial twin aisle passenger transport now in
scheduled service.

The essential differences both in certification and system requirements led the two GEC
Avionics design teams to adopt two different systems solutions and hence computer

drchitectures.

A310 SLATS AND FLAPS SYSTEM REQUIREMENTS AND DESCRIPTION

The Slat and Flap Control system for the Airbus Industrie A310 aircraft is a digitally
implemented electrical control system which has no mechanical linkage between tne cockpit
mounted Slat/Flap control lever and the respective hydraulic actuator. The system was
designed in collaboration with Liebherr - Aero-Technik GmbH for MBB GmbH, Bremen, West
Germany, who form part of the Airbus Industrie consortium. This FBW implementation was
selected for the following reasons:-

Weight saving.

Repeatabillity of very accurate surface deployment without rigorous mechanical

maintenance.

* Maintainability and fault diagnosis Improvements over a mechanical system.

. Incorporation of system protection features within electronics leading to the use of

lighter screw jacks.

5 Flexibility for modification and inclusion of pilot work-load reduction features
such as 'Slat baulk'.

The integrity requirements for this system can be summarised as:-

4n I - mSms m i

Failure to operate surface 5

whien commanded but tailure <I) per
indicated to crew. flight hour.

Failure to operate surface

when commanded and failure
not indicated to crew.

< O
9

per
Uncommanded surface movement, flight hour.

Asymmetric deployment of
surfaces.

The factors which were considered in the selection of the computer dnd stLwar,
architecture required to support this integrity and availability requirement 4ere a,

ol lows: -

* Extent of task - could it be contained within a design using the tlen avaiiabl.

avionic grade microprocessors?

* Certification authority opinion on the use of redundant monitoring or limiting

devices.

* Concern over analysis of software integrity and LSi device failure nodes.

These last two factors led to the use of dissimilarity both in hardware and software as
part of tile final architecture.

System Descrlption

Flight crew surface deployment commands aie transmitted as redundant electrical discrete
signals from the cockpit Slat/Flap control lever to the computers.

Figure 1 shows the interface of one channel of the flaps control system, the slats system
being similar in architecture.

SELECTOR COMPUTERS MOTOR

BRAKE

-, POSITON SENSOR

Figure 1 Interface of Electronic Control for Flap Drive

These commands are verified and then used to compute the direction and speed of surface
movement, if required. By using incidence information from both air data sources, these
pilot commands may be modified to prevent inadvertent full slat retraction above an
incidence threshold. A cockpit warning is provided If this protection feature becomes
active.

The facility also exists to limit flap deployment as a function of airspeed. This
function is implemented in the derivative GEC Avionics' Slats and Flaps Control System
for the Airbus Industrie A300 - 600 aircraft.

Position feedback is provided by synchroa attached to the output shafts of the slat and
flap hydraulic motors. Additional synchros mounted at each end of the transverse torque
shafts provide data for system asymmetry and speed monitoring.

S - V

7F

Upon detection of a system asymmetry, uncommanded surface movement or other critical

failures, electro-hydraulic brakes are applied at tle end of torque shafts in order to

lock tile system. This brake application, which must occur within approximately aUms ot
critical failures occurring, requires the agreement of both computing channels associated

with the appropriate slat or flap function.

System and Computer Architecture

The deployment of surfaces and the intensive system monitoring are controlled by two

identical digital computers. Each of these two computers contains two further
identically implemented but independent channels, one channel dedicated to each of the
slat or flap functions. Each channel drives the solenoid valves of its associated

hydraulic motor, which, via a differential gear arrangement, tranverse torque shafts and
rotary actuators, operates the respective slat or flap surface. Failure of a channel

causes a pressure off brake to be applied to the relevant side of the differential and

surface deployment is then available at half the normal speed.

To complete the system monitoring concept, a duplex computing arrangement was selected
for each of the independent slat or flap channels.

The outputs from the two duplex lanes are consolidated by use of combinational logic

techniques. This ensures that no drive commands can be generated by a channel unless

both independent dissimilar lanes agree. For certain critical outputs, eg, electro-

hydraulic wing tip brake operation, either lane has the capability of setting its

relevant channel output. Monitoring is carried out over a number of computing frames to

avoid nuLsance warnings.

Figure 2 illustrates the computer architecture and shows the consolidation arrangement

between the dual dissimilar lanes.

MOTOR BRAKE MOTOR BRAKE

IY CHANNEL 1 CHANNEL 2

MICO IROMICRO MI CRO

Figure 2 Computer Architecture Schematic

In order to protect the system against common design errors generating uncommanded

surface deployment, the concept of dissimilarity was employed. The two computing lanes
within a channel were therefore designed as follows:

Each lane of a channel is implemented using a different microprocessor procured from
different manufacturers.

This decision reduces the FMEA requirement on a chosen common device and assists in
the achievement of dissimilar software by enforcing dissimilar assembler statements.

Each lane contains its own clock and timing signals and operates asynchronously to

the other lane, both in hardware and software terms., :Stor maps implemented for each lane are configured differently.'

24

I i r e W, s t enR i : tlile . l1o c at 1 1 o t c oMn aold' w itroi n out p ut ord t Lo v IsInr? etLo:
siil 1a r d isicr et e c ommnaands d id no 0t occupy identicalI b it positions W itii I qiori I I n I
is 1v vs sa r s ince t he inon itur inag s),s t em o t c r oss c o i)A r inag c rixt ica I UtLPut 1 1i:-IlI IO

r1uie outpt d is cr et es t ron one l inie t o be nipped as inputs to tile otne r lmtie

Software Architec ture

Tne so ft wa re phitlosophy adoup t ed t ot rtLhe A 3 1 S Loat a nd Flap Com p ute r iS so oe.
d issimilarity fromn thle specification through L te source statements a nd n o st system, L.
(E)PR~OM f ile f o rmatLs. This dec isi!on t o u t i Lise a continuous cross compa r ison let we-1
d is s iiLar imp lemlentat:ions as p rotectcio)n agoiins t a d ormant e rror was t akeni t o i rcunveilt
the problem o f demonst rat Ing very high integrity l e veIs ir in siIa r s oit a r e- Dae
systems.

A separate software requirelnents d oc umentt kSKO) was produced If o r e achI lane . Han logi
produced t ile S Id 0, thle development procedure f olIo w s the nourmal path, in. e a ch la1n e, -1
to)p- down a ilal ysis to produce a modular structure and teen to design and generate c odeu tor
each module using assembler statements.

To avoid tile remote but credible possibility of a common host comnputer error int ro d uQ ;n
faults into the software two 11 ifferent host systems were used to assemble code, one ti r
each lane .

At this stage, instead of embarking on extensive nodule testing, t he a pproach t hat ha s
been t ak en i s toa assemble the software f or each l a ne a nd thbena t o perfourmn
hardware/combined s o ftwa re integration t e st in g. Experience w itLh t hi s t ecn i que hao,
s1i gh tlIy mno d if ied t h is approach and intEe gr a t ion te s t ing i s now f ir st comnducted ona
individual lamnes before fntegrating both dissimilar lanes together. inis partiali
integration reduces the nlumber of potential error sources and hence speeds the overal
task.

The key features of the dissimilair software developneiit process are shown in Figure 3.

(d~~llil~g FLY-BY-WIRE ~SYSTEM gilhErTSAD ESCT

TheST prime reur2n ftedmntao 1 Jauritgae lgtCnrlSse

(IFCS)SFTW wa topoie ulatort otolo h iafts fvepiay oto

surfacesENT namely I111UR CM7N

LeftCES andESO rih2ailm

RTP WddE

asishown In Figure 4;Softhae Krmey conturelsufcsbigson rsshtedJAGUR FY-B-WIE SSTE R~qIREENT AN DECRITIO
Th rm rqieen ftedeosrto IWJaurItgrtdFigtCn.o yt-

(- - i IVCS).. wa -opoie. atoiycoto f h icrf' --vepiar oto

the verall requirements;-

* Overall system loss probability (up to and including t he first stage of the
control surface actuation) should be no greater than 1U) per hour.

* The system should be able to survive any two electrical failures.

* The system should use electro-hydraulic first stage actuation with the
constraints that only two independent hydraulic supplies would be available.
and hydraulic failures could not be alleviated by any form of interconnection
between the two hydraulic supplies.

* The system should be able to survive a hydraulic system failure followed by an
electrical failure, or an electrical faiiure followed by a hydraulic failure.

* The system should in general rely on majority voting of the redundant elements
for failure survival rather than self monitoring within each of the redundant
elements.

S Similar redundant digital implementation (both hardware and software) should be
adopted without any reliance on any back up flight controls (e.g. mechanical or
simple analogue links).

..

Figure 4 FBri Jaguar showing Primary Control Surfaces

Systen Description

The f rst of these requirements was based on the desire to develop a full time FW system
which could be shown to be at least as reliable (in terms of overall system loss
probability) as the mechanical control linkages which it replaced. For this reason the
particular double hydraulic failure case did not need to be considered as this was a
common denominator (in terms of non-reversible tandem power actuation) between the FBW
system and its traditional mechanically linked equivalent.

That the second requirement is a by-product of the first is evident when one considers
that the failure probability of a single lane of a flight control system o the
required complexity In a military environment is likely to be ot the order of 10 per
hour. In other words a single fall operational triplex stem, which with this lane
failure rate would have a second failure probability of 3.10 per hour would clearly nut
meet the above system loss probability requirement. It was therefore decided to opt for
quadruples computers to perform the flight control computing tasks with quadruplex
primary input sensors (i.e. pilot commands, aircraft angular rates, and control surface
positions). Such an arrangement is able to survive two sequential input sensor failures
by means of appropriate majority voting and failure rejection logic within the computers.

In view of the requirements above the first stage actuation clearly needed to be either
quadruplex (with two sub-actuators per hydraulic supply) or sextuplex (with three sub-
actuators per hydraulic supply). The quadruplex configuration had the attraction of a

tf

t idy(oeooe)4 B intearfaceowith thear quadrple Sflahc nrlcmutr•F~)

Syt£Dscito
Thefisto.. hee..qure.ns....asd.n..e.esre.o.evlo.a....t.e...syte

whih oud e how t b a lastasreiale(intemsofovral sstm os

/

2-6

However in order to meet requirement for surviving electrical and hydraulic faults, some
form of actuation monitoring and sub-actuator lane isolation mechanism would have been
necessary, and would have placed a heavy reliance on the ability of the system to reject
an electrical failure (following a hydraulic system failure) in an acceptably short time
to prevent uncontrolled surface movement and possible catastrophic aircraft divergence.

it was therefore decided to 'play safe' and incorporate sextuplex (or duo triplex) iir~t

stage actuation. The feature of such a first stage actuation system is that with such a
high level of redundancy, lane failures can be survived by the process of tailure'
absorption i.e. the actuation elements do not need any hardware associated with either
monitoring or isolation. Any two sub-actuators or sub-actuator input failures can be
survived by virtue of the fact that there are always more 'good' sub-actuators than 'nad'
ones. A hydraulic failure is absorbed because the three sub-actuators operated by that
hydraulic system are not able to oppose the three (or two after a further tailure)
correctly operating sub-actuator lanes.

The remaining problem was how to interface four FCCs with each of the six lane first
stage actuators in such a way that one or two FCC failures could not propagate to more
than two lanes of the six lane actuators. The solution which was adopted was to inter-
face the four FCCs on a one-to-one basis with four out of the six lanes of each first
stage actuator, and to drive the remaining two lanes of each first stage actuator with
independently voted versions of the FCC output drive signals. These two additional
voting nodes required two further computers, each with appropriate segregation of data
transmission and power supplies etc., in order to eliminate any possibility of inter-lane
fault propagation between the six parallel redundant output interfaces. The resultant
Jaguar FBW system configuration is shown in Figure 5.

In addition to the quadruplex set of primary input sensors, sensors of lower redundancy
are used for those functions which may be necessary for optimum performance but which are
not necessary for safe flight. These are as follows:-

Dynamic pressure triplex
Static pressure triplex
Lateral acceleration duplex
Angle of attack duplex
Sideslip duplex
Autopilot sensors simplex

The dynamic and static pressure inputs are used for gain schedules etc. in the event of
a second similar failure the system reverts to safe fixed values, The fail safe lateral
acceleration input is provided as an adjunct to the prime yaw rate and sideslip angle
rudder control terms. The location of the angle of attack and sideslip probes is such
that single fail operation correLted angle of attack and sideslip is able to be derived.
The autopilot sensors (e.g. attitude, height, heading) are simplex and interface with
FCC4 only. They enable a limited authority, fail safe autopilot facility to be provided.

System and Computer Architecture

The four flight control computers (FCC) are operated with software controlled,
synchronous program cycles, and input sensor data is interchanged by optically isolated
serial data links, as illustrated in Figure 6.

This synchronisation and consolidation enables a bit for bit identical contrul law
implementation to be carried out in each computer.

The in-flight monitoring concept is threefold:-

(I) Software comparison of interlane data to implement the required voter monitor
functions.

(2) Independent checks of critical computer functions by a dedicated hardware
monitor. This is supplemented by calls to a sub-set of the resident self test
software modules. This sequence of calls is completed every 42 seconds.

(3) The use of a duo-triplex primary actuator to provide absorption of actuator
failures or actuator input defects.

Based on the necessity of having a continuously available primary flight control system
together with the decision to utillise synchronlsed voter/monitors to ease the redundancy
management task the design evolved into a multiple similar digital solution.

The flight control computer itself was designed to ease the integrity assessment task as
follows:-

(1) The machine instruction set was identical to that successfully used in previous
programmes, eg, Boeing YC-14 AMST. This instruction set was also limited in
size to ease the microprogram and software analysis task.

hRV

2-7

- ,f COP-E I IG

TAILEAON

~~AN~SRVOq

T-1

FLLb -h

C0M~wER 2LETF
Figur 5 Fight ontrl Sysem Cnfiguatio

/

IFCC . . . -

------------- - - - --- C

FCC I

FCC 3 r - -----C

FCC - - -15 - - - - - - -- - - -

Figure 6 Consolidation of Quadruplex Input Data

(2) The central processor unit (CPU) was designed by GEC Avionics to provide

maximum visibility and limit reliance on device manufacturers failure data.

(3) The software support tools were derivatives of those previously used on a
number of programmes and were of proven maturity.

Software ArchLtecture

The real time control is achieved by a hardware master reset rilser which calls a non
interruptable executive. The executive then calls the frames (processing time slices

containing related functionaI modules) in a defined sequence to provide the required
iteration rates for the various computing paths. Each frame typically contains control
laws, with related signal selection and logic module functions, and consists of a set of

program modules each defining a function that is easily defined, implemented, tested and
audited. The worst case run time of a frame is controlled at the design stage to ensure
that the computing task is completed before the master reset occurs. Should any fault

occur that causes the frame run time to exceed the master reset time interval, this is

detected and flagged as a computer fault.

The structure of the flight resident program is shown schematically in Figure 7.

The software design as with the A310 system, followed a formal heavily structured

procedure. The basic difference was that the software suite would be effectively

unmonitored except for normal frame completion checks.

The development process, illustrated in Figure 8, shows the extensive review, module
testing and integration procedures implemented to ensure the software suite accuracy.

- .0 ir-

7' - I I il I -

CONTROL FLOW - EXECUTIVE & FRAMES

SYSTEM MASTER
START RESET

F-1 EO L OA

S F E LOP

ecmm b t c c a d io v

aE l i e
I- I :j FE4 1 LOF

i J FE7 I

| Figure 7 Flight Resident Program structure

A310 SLAT AND FLAP DEVELOPMENT EXPERIENCE

The computer design and development programme began with contract award in November 1979
and first aircraft deliveries were achieved to airlines in April 1983.

During this time the hardware concept remained unchanged with the only major hardware

expansion, in the interface areas, occurring within the initial six month period.

The first flight standard hardware was delivered, on schedule. in Septemoer 1981, to

support the flight test programme which began with the first flight in April 1982.

Initial design of the unit included one spare module allocated to each channel of five
modules. No encroachment into this area has been required during the programme.

During the course of the development programme thirteen software s ftes were formally

issued, some issues being the result of only minor constant or logic changes affecting

only one of the two lanes.

1As can be seen from Figure 9, the final in-service software suite is four times larger
. than the initial estimates. This increase is due to two main factors:-

5 Under-estimate of task, including the effects of extremes in the operating
environment such as hydraulic pressure fluctuations. f

a Increased requirements both as new tasks and from specification refinement.

L ~ .. 7 - e A

REQUIREMENTS

DESIGN

SPEC
,, REVIEW

TEM DESIGN
ANALYSIS SPEC SSE

TETESTS
MODULE

PROGRAM MODULE LINKAGE
ESTIMATES CODE ASSEMBLER

CHECKS

ASSEBLECONFIGURATIOIN
UECHECKS

LOAD HARDWARE /
SOFTWARE SOFTWARE

INTO INTEGRATION
HARDWARE TESTS

Figure 8 Sottware Development Process

LANE 1
0 -- __.-_-- ._-
7- LANE 2 INITIAL

-x SERVICEwU 6 - - ' IT
N I" 1ST

5 1 ST FLIGHT
1/ COMPLETE SUITE

S 4-/ SUITE
DELIVERED

3'
g

2 * .7' 'ORIGINAL 2 3 4 5 6 7 8 9 10 11 12 13
ESTIMATE SOFTWARE ISSUES

FINAL TASK RIG AND GROUND_- FLIGHT AND

DEFINITION DEVELOPMENT FURTHER RIG
PLUS INITIAL EVALUATION
DEVELOPMENT

Figure 9 Growth of Software

9-1

2i I

Itne difficulty in translation of a well-known mechanical ftunction into terms
compatible with digital implementation.

This growth in software is not a new phenomenon in the industry nor was it unexpected in

the computer design. it has been accommodated within the designed growth margin of the
cumputer, but goes to emphasise the critical importance of including adequate growth

margins both in store and runtime in new developments.

in addition the inherent flexlbility of digital computers, including those such as the
A31j niat and Flap Control computer with embedded software, has been shown. Changes in

output interface operation and major functional additions have been accommodated during
development without modification to the computer hardware other than replacement (E)PKUM
devices.

The cumulative totals shown in Figure 10 for change requests include all those necessary
to support documentation alterations and the continual production improvement programme
associated with new equipment.

800

700-

600-

NUMBER
OF

CHANGE 400-
REQUESTS

300.

200- HARDWARE

100-

0
2 12 24 32

TIME IN MONTHS

Figure 10 Changes (a) Software
(b) Rardware

One early joint decision among the participating companies was to standardise on the

microprocessor host system to be used for development. This commonality enables easy
transfer of data between groups and made possible 'on the spot' investigations of problem
areas using emulation facilities.

Care was, however, taken throughout the development process to ensure that dissimilarity
of host systems was retained during production of formal software suites for flight
purposes.

JAGUAR IFCS DEVELOPMENT EXPERIENCE

The design and development activity formally started in 1971 with the award of a contract
to British Aerospace by the Ministry of Defence. This award was the outcome of a Ministry
Of Defence-funded study programme. the implementation utilised experience gained by
British Aerospace, Dowty Boulton Paul and GEC Avionics throughout the early 1970's on
previous aircaft such as the YC-i 4 AMST.

As with the Airbus programme, once again the original hardware concept remained the same,
with ground based rig dedicated equipment being delivered in 1978.

Following extensive rig and aircraft ground trials, including a considerable amount of
electromagnetic compatibility (EMC) and power supply transient testing, the first flight

took place on 20th October L98L. Flight testing of the fixed gain control laws was
completed in 13 flights, compared with the 14-22 flights budgetted. The aircraft proved
easy and straightforward to fly with excellent FCS reliability. The flying rate of the

aircraft was never limited by any problems within the FCS but solely by the large amounts
of data to be analysed between each flight.

4.* - *1

2-12 !

During this 4 month period only one FCS LKU was exchanged due to a detect. Ine .e c, ,
was prompted, during routine servicing, by BIT detection of a spurious cross Lan, J ,
transmission malfunction. So in-flight computing malfunctins occurred t rouguoit t 'i e
trials.

The Jaguar IFCS programme produced four formal flight cleared software saites t
number of interim standards for rig and ground test evaluation.

The four suites actually flown were designed as part of the continuous flight envelipc
extension programme as follows:-

I) First flight standard providing fixed gain control laws for a stable aircratt.

2) Software update providing enhanced BIT and scheduled gain control laws toir

stable aircraft.

3) Initial fixed gain suite for early flights with a -31j to -5%7 instability.

4) Complete gain scheduled suite for flight use up to -l0%Co

Ine first program store estimate of ?3k words grew to 15k words of In bits comprised it
approximately 400 modules for the initial flight standard.

The development time scale and the number of change requests raised during the design,
development, analysis and the extensive rig proving phases is shown in Figure II. The
largest proportion of changes were generated by the detailed module testing and analysis
conducted in the first half of 1979 prior to the first complete assembly/linking in July
of that year.

Further peaks in October 19?9 and May 1980 occur when new test conditions were invoked,
for example first systems rig exposure in May 1980.

A total of 13U0 change requests were raised during this period, of which over 5U, were
due to requirement errors or misinterpretation.

Immediately following releaso of the initial issue of Flight Resident Software (FKS), a
revision was commenced to incorporate scheduled gain control laws, to enhance the BIT
function and to rectify problems encountered during the early trials which had not
necessitated immediate correction. This proved to be a very extensive modification
exercise resulting in changes to some 75% of the 40J modules comprising the FRS. dowever
the timescale and cost of preparing the new issue was very much less than for the initial
issue, and by building on the system integrity appraisal techniques established for the
previous system standard, the clearance was achieved with less than 20. of the effort
required previously. The major changes in system performance required were achieved with
only the single hardware modification which changed the contents of the programme store
devices.

Recognising the problems of cost, timescale and integrity associated with software
modifications, additional software segregation was introduced to the FiS at this issue.
The 21K words of software required were partitioned across 26K words of store. This was
organised not only to provide software segregation at module and segment level, hut also

to contain different sections of software within separate programme store devices. The
objective was to enable future software changes to be contained to a minimum number of
software modules and programme store devices. Thus bit for bit comparison of successive
FKS assemblies would easily identify the change areas and enable subsequent verificationand validation to be more locallsed than could be justified if the new assembly changed

all of the programme store instruction locations.

integrity Appraisal

The specific requirements of a full time primary fly-by-wire system forced GEC Avionics
and our customer British Aerospace (BAe) to institute a major activity to appraise the
IFUS titegrity, especially the common mode softwa:e area.

The integrity of the IFCS is primarily determined by the system architecture. Therefore
the elements of maximum concern are the points where the redundant lanes are consolidated
or otherwise connected, together with the potential for common mode safety critical
design defects in the hardware, firmware or software. --

The appraisal was carried out using both 'bottom up' and 'top down' analyses, and since
some of the issues involved could not lead to useable quantitative estimates of risk,
qualitative assessments were also necessary.

The main elements and interactions of the appraisal/audit include:-

I) 100% coverage single fault Failure Modes and Effects Analysis (FMEA).
Ii) Multiple fault FMEA for specific combinations.
ii) Flight resident software audit.
iv) Appraisal of special areas.
v) Configuration inspection.

40 vi) Qualification programme.
vii) Burn-in programme.

K.> ~i777~7

7 r-.-

2- 3

80"

70 FIRST POST

COMPLETE RIG INTEGRATION FIRST FLIGHT

60- ASSEMBLY VERSION STANDARD
A A A

50"

Nos
of 40-

CR

30-

J20-
i iO

o

TIME IN0 612 18 24 30 36 MONTHS

Figure 1i Jaguar IFCS ist Software Issue Development Programme

These primary elements were supported by

a) Module, chassis and unit FMEA.
b) Microprogram appraisals.
c) Voter/monitor appraisals.
d) Tolerance analyses.
e) BITE coverage analyses.
f) System architecture analyses.
S) Reliab i ity analyses.

During the course of the appraisal detailed technical evaluations of various features and
functions of the IFCS were made. The requirements for these evaluations were generated
mainly from the FMEA activity, and by BAe as a result of their test activities.

These evaluations were reported as a series of Technical Appraisals appended to the
overall integrity report, and their results incorporated into the risk assessment.

The integrity appraisal was conducted by a team with specialist knowledge of the
equipment design, but to ensure rigour in the appraisal they reported to an independent
authority consisting of senior engineers from GEC Avionics and BAe.

An essential part of the system clearance depended on the extensive emulator, rig and
aircraft testing carried out at BAe, Warton. During these exercises, any unexpected
observation that could not immediately be explained by the personnel involved in the test
resulted in the raising of a formal query. A written response to every query, approved by
both BAe and GEC Avionics, was a mandatory requirement for final Quality Assurance
clearance of the aircraft for flight.

MAINTENANCE AND RELIABILITY

Specific attention was placed on these two aspects during the design phase of both these
FEW programmes in order to reduce the final operators cost of ownership. This section
will firstly discuss the concepts used in both designs to achieve this aim in an optimum

manner and then describe the in-service experience to date of the A310 system.

IV
JUIR|'

2-I-I

214

Design for Maintenance

The maintenance philosophy chosen splits into two areas:-

Reporting by the computer on the status of peripheral system components, eg, e Lectr-

hydraulic brakes, hydraulic motors, air data sensors.

Comprehensive self test capability together with i functional modularksed design.

System Reporting - One major advantage of integrating the system protection features int

the controlling computer is the tacility of providing information on the status ot

critical elements, eg, electro-hydraulic brakes as a replacement for scheduld mechalic-l

inspections/checks on previous generation civil secondary flight control systems.

Such mechanical protection systems could require partial dismantling of torque shalt runs

to check the 'blow back' protection features.

The A3o Slat and Flap control computers for example, continuously monitor and report, ho

non-volatile display, the status of the following peripherals:-

* Hydraulic Solenoid Valves

* Hydraulic Pressure Switches
* Pilot Control Lever Interface
* Synchro Position Pick Offs
* Wing Tip Brake Coils and Power Supply
* Air Data Sources
* Flap Vane Position and Jam Switches

* Kruger Flap Position Switches
* Hydraulic Motor Performance (by Speed Monitoring)

Self Test and Fault Diagnosis - As with all digital computers a comprehensive iii

facility is provided for a minimal increase in complexity. The fil system for the AJI
Slats and Flaps control computer provides, for example, coverage of 79 percent ot the

unit total failure rate.

Note - This isa pessimistic figure as, for example, all failures of filter and bypass

capacitors were considered to be undetected.

The fault coverage Is limIted malIy by the specification requirement to provide
isolated, low leakage current, output discrete interfaces. Extension of BIT coverage

across isolation devices was considered uneconomic for the benefit received.

During the design phase of both systems attention was given to functional allocation to

modules, so as to ease the diagnostic task.

Reliability

As with all avionics, the aim is to maximise the unit reliability. The initial design aim
at A31O contract award, for example, was to achieve a mature computer MTNF of at least
10,OO hours.

To achieve this aim the following principles were adopted:-

Preference was given to low dissipation circuit designs, where performance allowed.

* Conservative component derating figures were applied during circuit design and

verified at design reviews.

* High failure rate components are specified as high reliability burnt in parts from

suppliers.

* All completed units are subjected to a burn-in procedure prior to delivery to remove

component infant mortalities.

Current Ezperience with the A310 System

Although the use of Fly-by-Wire techniques within a Slat and Flap control system is a new
development for airline use, operator acceptance has been high.

At this time, the Airbus Industrie A310 is in revenue service with 15 airlines and the
feedback available confirms our original MTBF prediction of>O,OUO hours by achieving an
actual MTBF of 12,938 hours. The current ratio of MTBU to MTBF is two-to-one which we
expect to decrease with increasing operator experience. Regrettably, advances in this

area can easily be nullified by the ease of removal of digital computers when compared to

mechanical units.

GEC AVIONICS EXPERIENCE WITH THE USE OF DISSIMILARITY

As previously mentioned the technique employed for passivating software errors with the

A310 Slat and Flap control system is dissimilarity from the design requirement level
down.

- -%Nor

.. I III

2-15 '
The monitoring scheme is to constantly cross compare the safety critical output' computed
by each lane and to diagnose a computer fault for a mismatch lasting longer than a Preset
interval. This can be likened to a real time cesc against a simulation thiroughout toe
operational life of the unit.

This simplistic technique has the disadvantage of trading availability for integrity,

which although acceptable in this particular application, can not necessarily be extended

to other flight control applications. Investigations into more sophisticated dis-
similarity techniques are underway and are outlined in the section "Future Uevelopment In

DissimiLarity".

The basic technique has, however, been proved successful, as from the initial system rig,

evaluation, through flight test, into airline service no uncommanded surface movement has

occurred. All software errors which have had the potential to cause such a hazard have

resulted in computer fault indications with resultant channel shutdown.

Dissimilarity also has not, as could be imagined, involved GEC Avionics in a doubling ot
the software non-recurring cost as the testing/integration technique used avoided the

extensive and exhaustive detailed software FMEA and module testing required by multiple

similar systems.

The testing philosophy of using the dissimilar lanes as 'test harnesses' for each other,

has also been successful. The result has been that crucial software errors are

discovered during initial integration testing, and are manifested by computer faults.

However, some low integrity errors may be masked by the dual nature of the design. This

has now led us into separately integrating each individual lane of software with the

hardware, using a dummy routine in the other lane before complete hardware/software

integration occurs.

Overall, we consider our initial A310 decision to use dissimilarity to have been

validated and have carried this concept forward into the A340 Slats and Flaps system

solution currently in development. This A320 system will also include the use of High

Order Languages as part of the implementation.

Figure 12 shows the cumulative number of discov'red software errors against time,

annotated by software issue and event.

SOFTWARE
ERRORS
350- 320

300 IN
SERVICE

250"

200. 1ST
FLT.

150-

100- COMPLETE
SUITE GROUND

50 TEST FLIGHT

SUITE TEST ISSUES

4 16 28
TIME IN MONTHS

Figure IL Software Errors Found - Cumulative Total

As can be seen from Figure 12, the flight resident program was mature at one standard
prior to first flight. Then, extended testing at corners of the operating envelope, eg,

0 fluctuating low hydraulic pressure associated with repeated and rapid changes in
requested surface position, has resulted in additional changes being incorporated mostly

prior to airline delivery with the remainder being swept up in an in-service software

update by service bulletin.

FUTURE DEVELOPMENTS IN DISSIMILIARITY

During the course of the application of dissimilar techniques to the A3I0 Slat and Flap

system, a number of areas became highlighted as worthy of more attention, as follows:-

E nsuring dissimilarity.

* Risk of multiple channel disconnects for one residual software error.

* Lack of capability to provide a failure operational system for a residual softwar,

error.

S Cost penalty involved in supporting independent multiple software teams.

To address these problem areas, an alternative approach, first proposed by ProfessorJ
Shepherd, is being studied by GEC Avionics together with tnhe Cranfield institute oft
tec hnolIogy unde r cont rac t f rom the Royal1 Ai rcraftc Es tabl1ishment (4) . Essentially, the
method follows the known concept of error recovery blocks but evaluates the alternative
block concurrently with the primary block.

The method depends upon two techniques:-

* the concept of temporal separation of software Channels.

* The concept of deriving an alternate version of the program from the primary

version.

These techniques are discussed below.

Temporal Separation

The concept of temporal separation is essentially based upon the fact that while spatial
separation prevents the proliferation of hardware faults, software faults are time
dependent. Thus, to ensure that a software fault does not affect all channels simul-
taneously, it is necessary to ensure that each channel does not process identical data.
The method of enquring this depends upon the fact that for a real time system such as
flight control a high iteration rate is used, The method is then to use inputs from
different time periods for each of the channels.

Having separated these channels in time, it becomes possible to validate both the
hardware and software operation before committing that iteration to control of the
aircraft.

This validation is achieved by comparing the computed outputs/ functions of one program
with that of an alternate version, using the identical data, This technique also enables
hardware faults and software errors to be isolated.

Having then isolated a suspect software channel, it is saggested t ha t a Langrangian
Etaoaio of the previously validated outputs is used to control the aircraft until

te alternate pro0gram versions are found to track once more within tolerance.

For this method to function it is of course necessary to construct an alternate version
of the program, The ethod proposed to do this is described below.

A He thod of Generating an Alternate Version of a Program

In considering software monitoring, it is necessary to consider the tour t ypes o01

operation encountered in a program, These are:-

* Arithmetic Operations
aLogical Operations
* Decision and Branch operations
* Input/output Operations (Including Interrupts)

Each of these types of operation are considered in turn.

Arithmetic Operations - As an example, to produce an alternative implementation of an
arithmetic operation, difference equations could be formed to allow computation o: a
variable, based on the change since it's previous computation.

Logical Operations - In addition to arithmetic operations it is necessary to consider
logical operations of the form:-

A: B+.C

Where:-

+ - OR
- AND

S I!am -

'\N

In general with these types of equations, it Is easy to produce an alternative algorithm,
based on De Morgan's theorem.

In general, as is common in logic design any Boolean function can be expressed in terms
of either NOR or NAND operations and thus, there are always two alternative expressions
for logical operations. Thus, the requirements for having different algorithms for the
main and check programs are satisfied.

Decision and Branch Operations - These operations are typically of the form:-

BEGIN

IF X = Y THEN BEGIN

MODULE A
END

ELSE BEGIN
MODULE 8
END

END

It will be seen that this type of operation is a combination of arithmetic and logical
operations and can be treated as such.

Results of Preliminary Study

In order to check the validity of the approach, software representing the short period
mode of an aircraft was developed and the techniques described above were applied.
Approximately 60,000 random faults were introduced for each of three different input
signals (which had random noise superimposed to ensure that realistic signals were used).

The results obtained were:-

Sine Triangle Sawtooth
Test Test Test

Number Of faults 61127 62019 Lb103
! Detected -00 iO 100
% Errors Corrected 83.9 82 75.6
Acceptable Errors
(I - 151) 16.0 17,9 24.3

--Unacceptable
Errors 0.i 0.1 0.i

In practice the sinusoidal input is more nearly representative of the type of input used
in flight control.

It should be realised that no attempt was made to optimise iteration rates or tolerance
levels during this study and that therefore it is to be expected that even better results
can he obtained.

the results obtained, however, indicate that the proposed approach is valid and that it
is worth considering the concept further.

.UNC Lii I :5

Both the laguar IFCS and the A310 Slat and Flap system have been successful FBW implemen-
tations of flight control systems. A number of important lessons have been learned and
an equal number relearned or emphasised during the course of these successful programmes.

These Lan best be described under three headings - System, Software and Hardware.

System

Tn, ihiiitv ot A primary digital fly-by-wire system to provide normal aircraft handling
I t he Ie- f ir unstable aIr vehicles was proven, the Jaguar program having achieved

, c, I:sport once of having representative rig evaluations conducted early in the
- rgruam i. tuding exercise of the complete operating environment.

t-e it -- saintenance data available from the system together with the deletion of
-ool le hanlal inspections for integrity reasons points the way forward.

he 11s4i n to adopt a diislmilar approach to the A3IO system solution in both hardware
iJ and qoftware eased the certification burden.

. A

Software

As with ,Ill software tasks, the need tor a clear unambiguous speciti ation to enSur

accurate so itware system design.

I'n e ne ed f or c lose interaction between at rtratme constructor and r I gh t control SYStL:1

suppLier w.is highlighted to ensure maximum agreement/understanding at requirement level.

rie need within a dissimilar duplex arrangement to perform simplex testing before totai
integration level to improve availability ind remove possible dormant errors.

gelated to the first conclusion, ambiguities became highlighted during development my the
inherent different interpretations occurring with separate software teams implementine
the same requirement.

ie common yiost arrangement between all parties in the A310 development programme nabled
problems to be studied on site and in parallel without transporta(ion difficulties.

Bout h programs have h ighl ighted the nLeed to review the re-validation and verit lcati,)n

requirements associated with software, following implementation of modifications.

For high integrity applications, software is particularly critical. All software coanges
must, therefore, be controlled by the design authority who alone was party to all design

and certification decisions.

Hardware

The inherent flexibility of digital systems has resulted in very few hardware

modifications in either of the programmes.

The need for adequate growth potential both in store and runtime to be designed in. This
growth margin could be as muich as 5:1 over original estimates for new tasks for which no

previous experience is available.

The reliability of current generation computer hardware, has proven to be consistent with
predicted MTBFs of the order of 10,OOUU hours. This is partially due to the low thermal

dissipation devices now available in the market place.

Regerences

I[Mr. Andrew D. Hills - AJiU Slat and Flap Control System Management and Experience

(5th DASC, November 1983)

(2) Mr. K.S. Snelling - Certification Experience of the Jaguar Fly-by-Wire Demonstrator
Aircraft Integrated Flight Control System (AGARD Conference proceedings No. 347)

IA) Mr. R.E.W. Marshal, K.S. Snelling, J.M. Corney. The Jaguar Fly-by-Wire Demonstrator
IFCS (Advanced Flight Controls Symposium - August 1981).

(4) Professor 3 T Shepherd - 'Some Approaches to the Design of High Integrity Software'

(Carder pp Z9 - 38, June 1983).

Acknowledgements

The Jaguar Fly-by-Wire programme has been carried out with the support of the Procurement

Execut ive Ministry of Defence.

The author acknowledges the special team effort that the Jaguar IFCS programme has
involved. Success depends upon the combined efforts of British Aerospace, Dowty Boulton
Paul and (;EC Avionics. In particular the programme would not have commenced or been able

to continue without the enthusiastic support of the British Ministry of Defence and RAE
Farnborough. His thanks are extended to colleagues In British Aerospace and the Combat
Aircraft Controls Division of GEC Avionics for assistance provided in the preparation of

this paper.

The author also wishes to acknowledge the valuable contribution of Liebherr-Aero-Technik

GmbH to the success of the A3I1 and its derivatlve Slat and Flap control systems.

40

I - - .,* :~vIr

p I

REDUNDANCY MANAGEMENT
OF

SYNCHRONOUS AND ASYNCHRONOUS SYSTEMS
by

Gregory M. Papadopouke
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

SUMMARY

While asynchronous systems may initially appear attractive due to the 'uncoupling of the channels, the cross-channel
interactions are much greater than what might be expected. Both synchronous and asynchronous system. share the burden
of cross-channel consistency maintenance, the requirement that inputs and internal states are not allowed to diverge too far
from each other. In fact, consistency maintenance often dominates the engineering process in a correctly designed system.
In asynchronous systems, consistency mantenance takes the form of cross-channel equalization along with techniques for
handling discrete changes in operating mode. In synchronous systems, consistency maintenance is implemented with source
congruence algorithm.

Synchronous and asynchronous systems must both support reliable resolution of redundant channel outputs, the

process of isolating correct effectuator commands from faulty ones. A correctly designed synchronous system may rely on
exact bit-for-bit voting to isolate faulty channels, while an asynchronous system must employ more heuristic means such
as threshold and reasonableness tests.

We conclude that data synchronous principle is the approach of choice. These systems provide general purpose vehicles
on which increasingly complex and diverse flight critical applications may execute.

1. INTRODUCTION

The nature of flight critical functions is evolving rapidly. As automation is aggressively applied, more and more
functions are being absorbed into the flight critical realm resulting in a basic conflict. While automation may dramatically
enhance an aircraft's effectivenems and survivability it simultaneously increases the risk and consequences of equipment
malfunction. For instance, automated terrain following may significantly improve the chances of survival by reducing
exposure in hostile environments but a failure of the terrain following mechanism could have catastrophic results

Of course the same observation can be applied to traditional fy-by-wire control. The performance and efficiencies
of open loop unstable airframes must be balanced against the costs of highly reliable control systems. But there is u
important difference. It has to do with the nature and complexity of the functions involved.

We claim that the redundancy management developed for traditional light control systems does sot secessry
generalize to more complex functions. In fact, the entire clas of data asynchronous redundant computers may fail to
effectively support the increasing demands on light critical systems.

It is the goal of this paper and its sequel IlI to methodically develop the concept of a general purpose, fault toler-
ant computing system on which a great variety of algorithms may successfully execute. Importantly, we ins that the
applications programmer be inslated from the low level details of the implementation. Applications ought to be written
assuming that they will execute on a atge, very reliable computer. An application algorithm is developed to specify the
control laws, sensor and actuator fault detection, isolation and recovery mechanisms (FDIR), and adaptations to changes
in the plant's behavior. The role of the computer redundancy management, therefore, is to ensure the application continues
to run correctly on a redundant machine in the presence of a specified number of malfunctions. We endeavor to separate
the problem of writing correct program from the problem of providing a correctly functioning vehicle on which to executetheme program., -

thest ntly, few system can actually guarantee correct operation in the presence of even a single arbitrary fauit,

let alone provide generality, extensibility, and application independence. Systems requiring exceptional reliability cannot
be reasoned about heuristically or informally. It is impossible to empirically determine that a system meets a very hgli
reliability goal. It is only poesible, by negative expriene, to deduce that it does sot meet expectations.

There are, however, basic theoretical and practical results in the area of redundant computation, specifically the
problems consistency maintenance Js2114), and synchronisation 15u1[1. We will attempt to translate thes theors into
a model that can evaluate the elect of engineering decisions upon the ultimate correctness of the system. One such very

4. / important engineering decision occurs early in the design cycle and is central in the following discussion,
Shoald t redundant channel of the ytem be syncronisse (instruction or me) or allow to ra sy-

We shall explore the implications of this decision in term of the redundancy manaulmsat requiremnts on the system.

/ i ",

2. DATA SYNCHRONY
Initially, digital computers were employed as cost-effective replacements for analog systems and specialized digital

logic. In these roles the computer's job was to emulate the function it was replacing. Analog inputs were sampled, operated
upon by difference equations, and then converted back to analog form.

In these approaches, the concept of an input can only be loosely specified as the "most recent value' or the current
sample time. As shown in Figure 1, this may be contrasted with a more rigorous notion of a function operating on a stream
of input data. The actual data values processed under the sampled formulation is a function of when the program reads a
location containing the latest sampled point. In the case of a stream, the formulation is time independent. Conceptually
at least, the process consumes the next value from the stream when it becomes available. In a real time system we must
of course ensure that our process can consume values at least as fast as they can be produced.

We term systems that adopt the sampled data model data asynchronous. Systems that enforce the more rigorous
concept of data streams shall be termed data synchronous. In the case of a single processor the differences between these
two approaches are somewhat immaterial. The importance of one formulation over the other becomes very clear in the
case of multiple processors, however.

G *U,/ lse

Ii .I.Saplcd hlpuI'li
11L' Nil'1ll! hi',h01 11 k 1, lh JpSCd to its .

()ilt.'llC ~ ~P Of "R AMc ll"

11)..t Stre.,an or Inputs

F.ich ,anplc 1.0,11l11 1", "O"1"I'dcrvd Ito he

'I unitue datui.

Figure 1. Sampled Inputs Versus a Stream of Inputs.

2.1. Consistency and Synchronization
Now suppose that we wish this program to execute on three independent processors and would like to compare outputs

in order to isolate processor faults. Given that the programs and processors are deterministic, t the outputs will exactly
agree when (I) all processors are fault-free, and (2) all processors receive exactly the sme inputs. It does not follow that a
faulty processor necessiy will produce inconsistent outputs (this is the problem of latent faluls, dealt with in the sequel),
only that inconsistent outputs imply a faulty processor only if the inputs are identical.

This simple yet key idea of input consistency is central to correctly operating fault tolerant systems. It is one of the
most difficult properties to maintain in a fault-prone environment. While it may appear obvious or even trivial, it is rarely,
if ever, performed correctly in production systems. As shown in Figure 2, inconsistent inputs can be introduced in two
fundamental ways,

1. Abasing. This is a property of data asynchronous systems. The different procemors may sample the inputs at
slightly different times. The effects of this input inconsistency on the outputs will be dealt with shortly.

2. Faulty Sources. This problem plagues data synchronous systems as wel. A faulty source may deliver different
values to each of the procemors. In this case, a single input may induce the processors to all diverge; a cl, and
catlatrophic, violation of our ability to identify faulty processors by comparing their outputs.

Within our terminology, the problem of alasing is one of data synchronisation. The problem faulty sources is one of input
consistency. Solutions to these problems invariably take the form of the exchange of information between procemors. Them
exchange mechanism cannot be treated informally. For any dependence created between processors can become a potential
path for propagating faults and thus undermine the reason for introducing exchanges in the &s place: to prevent a faulty
unit from inducing a healthy unit to malfunction.

t To be precise, it is required that the program be a continuoum and monotone function of the histories of its inputs.
More simply, continuity requires that a program produce outputs without requiring an unbounded amount of input, while
monotonicity prohibits a program from producing outputs before it has received inputs. A fault-free deterministic procemor,
by definition, must lways yield the same outputs whenever executing the same program on the same inputs. 1

-low

3-3

6.336.

Time

2a. A liasimig (or Samnple Skew) 6 . hne

'Me production and consunmption of sensor values are

not s) flchrofiLed. The channels then produce different results.

All All

2b. A Faulty Source 6765 Ca e

Even with perfect synchronization, the sensor can induce
different values into the channels

Figaire 2. Aliag and Faile Sources Can Induce Inconsistent Outputs.

3. APPROXIMATE AGREEMNT IN ASYNCHRONOUS SYSTEMS

One possible solution to the input consistency and synchronization requirements is to relax the condition of et
agreement among redundant output. and replace it instead with approsmiae agreement. Does this then translate to a
more relaxed approximate agreement constraint among th inputs? Does it make redundancy management easier of more
robust?

3.1. Eimulation of Analog Systems
The &Ars use of digital computers in Moigt control wan a cost-effective replacement of analog equipment. 71e traditional

'black box' decomposition wa maintained: nor packa, air data, control law, dt eem The signal protocol between
these nactions was still in the analog world. Analog inputs would he samnpled by Aaalog-to-Digital converters, internally
processed, and then output u an analog wavefom through a Digital-to-Analog conversion. To 64 order, the input/output
behavir of these boxes remained the same. They simply emulated the funactionalit of the analog circuits the were
displacing.

In the aalog world, the computers thuselvas we not completely deterinistic as a wide variety of random noiessources sleet the nominal tunder functions of the components. As such it was impossble to rely on exact agreement of

-lt

output. Instead, outputs were compared within thresbods. A signal and/or its derivatives must lie within some BorMed
distance to a majority of redundant signals, otherwise it is considered faulty.

Strictly speaking a signal can't be faulty. Some underlying process (hardware or software) has induced the signal to
take on anomalous values. Thus a threshold test can only relate to a hardware fault only to the extent that exceeding or
not exceeding the threshold can be reasoned to be a fault in the underlying procem.

Thresholds are tricky things and very application specific. Too high a threshold can permit bad outputs to go
undetected. Too low a threshold causes nuisance or false alarms. Either way, the reliability of the system can be seriously
compromised.

The correct threshold gets more and more difficult to determine as the underlying processes become more complex.
In the case of sensor and actuator FDI, models of these procemes are mathematically tractable and thresholds with
good detection/nuisance properties are readily derivable and can be supported through extensive simulation. For complex
analog systems, and especially their digital emulators, the underlying fault processes are impossible to quantify or even
enumerate. Thus the thresholds must be set with respect to the expectations of the nominal signal values. So instead of
directly looking for signatures of faults, we are instead asking are the outputs reasonable?

3.3. Testing Reslta, Not Hardware
Under these conditions it is impossible to separate the problems of correctly operating units versus a correctly operating

system. The setting of a threshold must consider the dynamic behavior of the vehicle, be sensitive the current operating
mode, and tolerate noise. These demands lead to complex thresholding functions, often involving filters and time averages
of threshold trips in order to diagnose a channel as faulty. Every time the application is even slightly altered the thresholds
must be re-examined. This is the antithesis of application independence. As the complexity of the application increases
the dependence becomes even more pronounced.

It is impossible to quantify all of the failure modes of a general purpose computer-the generality that permits
programming for any problem also admits extremely complex failure processes. Any experienced computer designer can
attest to the truly bizarre behavior some bugs can induce. Intuition gained with hardwired control systems may serve
poorly in the design of complex redundant computers.

Nobody really understands the failure modes of digital computers. To say 'that will never happen' to a demon-
strated failure mode is dangerous at best. We must be willing to invest in provably correct redundancy management
techniques if we wish to enjoy the benefits of general purpose procemors

Testing the reasonableness of outputs produced by digital processors is not a direct measure of the health of the underlying
hardware. In fact, very sophisticated applications, such as Artificial Intelligence (Al) may require as much or more effort
to determine whether a result is reasonable than it took to compute it!

A coherent policy of redundancy management must base its decisions on more direct information about the actual
state of the underlying processes, in our case digital computers and their interconnect.

3.4. Maintaining Reasonable Thresholds I. Difficult
In light of the threshold problems, to be effective the nominal output differences between the redundant channels must

be kept controlled and as small as possible. In a data asynchronous system this can become a more difficult task than it
might first appear.

Oversampling
By definition, the redundant channels in a data asynchronous system have sample clocks that are independent of one

another. The skew between the sample clocks causes each channel to obtain slightly different values for each of the inputs.
Importantly, this skew induces a certain phase uncertainty in the compensator when the outputs of the redundant channels
are averaged or summed. A common solution to this problem is to oveampe the compensator, running it at a faster
sample rate than what would be required in a simplex implementation.

Oversampling has the obvious effect of increasing the processor loading, often times by a factor of two or more. This
increase has to be assigned to the overhead of redundancy management, as it does not exist in a simplex system. This
burden can be reduced somewhat by employingspecial low sample rate control laws, but the simplex case would also benefit
from this extra engineering.

Equallsatio
Modern control systems often employ forward loop integral compensation and high gain proportional compensation.

In these cases, the compensator may be unconditionally unstable or quickly saturate when not closed through the airframe -" .
dynamics. f such compensators are simply replicated with their outputs averaged the results can be disastrous. Figure 3
gives a simple illustration of the divergence that can happen in this cwe. So even if the sampling skew is very small and
the inputs are nearly ntiea", the outputs can rapidly diverge. This is because the difference are integrated over time.
Even a small inpat skew can result in unbounded output skew. The only solution to this problem seems to be crom channel
equalisatioa, whereby the state of the redundant compensators are exchanged an factored into the forward loop. This is
shown schematically in Figure 4.

Mode Changem
In a multi-mode control system it is important that all channels change modes simultaneously. This is especially

true when reverting to a dowamode in the case of a sensor or actuation failure. Smith L8 gives the example of a ly-by-
wire system where the primary mode is an alpha command mode. Two redundant alp vaes am provided as a good
compromise between the relative cost and difiiculty of measuring alph and the importance of this measurement in the
primary mode. i the outputs of the vam diverge by more than a certain threshold then the channel degrades to a simple

I ,.- -4

Input diquurhdnce
o adInertr

Mid .du cilvr~ge)

It C
C

-- A IIILZ
Time ime

Figure 3. Redundant Outputs Can Diverge Even With Small Input Skew

Figure 4.inputs Channel EqA l aio

shadowingo dxching maneveks

hann tel dCgcanl abe ot

tObd auata elbralhe dmugnicobffer ther to match te siml dtoa farom te ca nneomieform ofh

ote hchadonte prodeainl path e fo unhe thy l chausing thath obv ios erndeou d il. od

Time apong isull emploled the- wiet fortae vxcau, o iormaetion aetminorce.dTondat that thgoo

dealof he traitivmen ofwtacrows sstes, pima4 te inepsideW o Ire runin chnnekhasbenl.d

p ..

-!

Consider the case of the alpha mode controller above. Suppose that a maneuver causes the vanes' outputs to diverge
very near threshold. As shown in Figure 5, redundant channel A perceives a trip, while channel B and C do not. Normally
the exchange of the threshold discretee would resolve this problem. Channel A would notice that a majority of the channels
did not perceive the trip so it will continue to use the average alpha values and remain in alpha command mode, Now
suppose that channel B has a failure on the data link that broadcasts its threshold discrete. The failure, quite reasonably,
might be such that channel A no longer sees the discrete as asserted but channel C still does. This will cause A to
dowumode, while B and C do not. If this continues for a few cycles, A will certainly be diagnosed as failed. A failure of
one channel has induced a failure in anotherl

(LhilCI 111

('LIIIIC . tq

I]

I C

ItL

figure S. An Inconsistent Exchange of Threshold Discretes.

A whole host of failure scenarios could cause this. A broken wire to channel A is a possible cause. So could a marginal
or noisy output driver. Channel C might be able to recover the signal, while A can't. Even heavy encoding doesn't help.
Suppose that some form of parity or CRC checks were encoded in the exchange. Channel A would, with high probability,
notice that B's output is bad. What should A do? It sees a trip, C doesn't, and it doesn't know the state of B.

4. APPLICATION INDEPENDENCE THROUGH EXACT AGREEMENT

The problem inherent in data asynchronous system are traceable to a common condition: the existence of slightly
different views of the system state among the redundant channels

Suppose that we invest in mechamis that, at a very low level, would enforce exact agreement for all data valu"s
used by all healthy channels. Given the further assumption that the channels are somehow syachronized to run a common
frame rate, the following problems are resolved.

I. Equalization. All compensatos get precisely the same input values. Because a fault-free digital computer is
determinmtic, it a guaranteed that all intermediale values sad ultimka outputs will be bit-for-bit identical. This
is a crucial deduction and provides the basis for application independence.

2. Mode Changes. Because all input values will be identical all input FDIR algorithms will yield identical results.
Thus all channels will dowumode during the same frame cycle. All other discretes will also be consistently
distributed, resulting in identical mode changes in all channels

3. Overamplhng. The exchange of any data will automatically provide a level of synchronization among the channels.
Processors will exchange data at given points and wait for all other processor's data Thus data synchronization
has an implicit real-time synchronization.t

t Jut exchanging data does not automatically imply a lack of time divergence, a slow processor can still be 'Wt bekid*.
This is solved by various synchronisation primitives to be discussed.

LI

The combination of input consistency and some level of synchronization yields a very nice result. Aside from the data
exchanges that must be employed on any input data and possible synchronization primitives, the application program is
written as if it will run on a single, highly reliable processor. This means that the redundancy management techniques
are truly application independent. The data synchronous system engineer provides a general purpose vehicle on which
to execute a very broad clam of problems, largely independent of the type of computations being performed. Conversely,
the application's programmer is insulated from the vagaries of the implementation, and can write algorithms that will be
independent of the specific vehicle on which it is to execute.

Redundancy management is distilled to the problem of maintaining input consistency and channel synchronization

5. CONSISTENCY MAINTENANCE

Maintaining input consistency is a demanding requirement. In theoretical circles, this problem is known as the
Byzantine Generals Problem, and encompasses the discipline of reaching agreement in the presence of faults. Provable
solutions to the problem exists, including several systems which have correctly implemented Byzantine agreement. In
the following section we will develop a framework for the problem and its solution. In the sequel we shall translate this
framework into tangible engineering designs and tradeo&. It is essential that an engineer undertaking the construction of
highly reliable systems understand the sources of inconsistency and be able to identify correct solutions. The existence of
consistency maintenance hardware is truly a litmus tet for hgy reliable systema

5.1. Threats, Faults, sad aihure Independence
Any system is subject to threats to correct operation M9. Threats take a number of form: normal environmental

threats such as component aging, abnormal environmental threats such as transients, or hardware/software design flaws.
Faults are the anomalous conditions resulting from threats and a fault model is a functional description which captures
the important aspects of expected faults.

Any design must asess the class of threats that the redundancy is expected to handle. The system is then partitioned
into fault sets, each having independent failure statistics from the others. Fault sets are an abstraction of our intuitive
notions of physical isolation. Generally speaking, functions implemented on one processor will be in a different fault set
from functions implemented on another, provided suitable isolation is engineered between the processors.

The system redundancy management must prevent the propagation of faults across these fault set boundaries. Although
a faulty processor can never directly cause another healthy to become faulty, it might very well came another to compute
irrational results. (Refer to the alpha vane problem presented in Section 3.5) The way a malfunctioning unit may influence
good units is through the exchange of data and the exercise of control Without loss of generality, we consider the exercise
of control to be a kind of data exchange. Thus the effects of a malfunctioning unit upon a good one can be expressed
purely in terms of information exchanges.

5.2. Modeling Data Transaisison
It is precisely the vagaries of the information exchange mechanism that the fault model must capture and that our

systems must deal with correctly. There are two central assumptions that permits a solution to the data consistency
problem.

1. The source of information is always known by a fault fbee receiver. This has strong bias towards the use of
interconnection links rather than multiplexed busses for the interprocessor data exchanges. The problem with not
knowing the source of data (which fault set) a prioin, is that a faulty processor might masquerade as different one.
This does not prohibit multiple receivers on a link but imposes severe design problems when there are multiple
transmitters. An important note: if multiplexed busses are used for the consistency exchanges then it is not
guaranteed that any of the following results can be proven to hold. Beware!

2. Information lows only from transmitter to receiver, if full duplex communication is desired then a back link is
required. Of course, this link might very well share the same physical medium. The restriction is really one from
preventing a faulty receiver to influence a transmitter. This doesn't prohibit handshaking. It only requires that
such mechanisms are safe. That is, if the receiver violates the signalling protocol, the transmitting processor is
not somehow deadlocked or prevented from doing other computations.

The modes of failure that are of key interest to s are ones in which allow inconsistent data to be broadcast throughout
the system. As such, we adopt the following aggressive and quite general fault model.

1. A faulty processor may transmit any arbitrary stream of data any of its output linka. It may fail silently on some
link, produce gibberish or babble on others, or even produce what looks like perfectly well formed messags but
of arbitrary content.

2. Two different receiver listening to the same output may receive different memsge .This is an essential property
of any ommunication made through noisy channels with insikcient margins. The ability for a failed tranmitter
to lie is the most overlooked yet potentially catastrophic failure mode of all redundant systems.

/ It isemy to e how filurm in the Art cme can readily occur in practice, and bow such failure modes could lead to
iconssitent system states if pmoemor A communicate@ with B over oa link but with C over another it is perfectly
posible that it could send dfferent data B and C in the eveat of a failure in A.

uThe soltion appers to be trivi. Ifit is oiportant that Band C gt the aw memage from A then put themon
the a- lnk. The secod apect of the fault model would imply that this wont help. But how realistic is this amumptio?

SHo can two ai-s reding the same wire get deret results? May different ways.

-S-

Figure 6 shows how this might happen. Suppose A communicates with B and C by broadcasting serial data and a
decoding clock. H A fails in such a way that the signals on the data line become marginal then B and C could obtain
different results. A's failure might be as simple as a bad solder joint on a terminator or a failing output transistor. In any
cae the event seems quite probable and it must be considered in the design of any hig reliable system.

Receivers

'anslmitCr A IIUOI

Vil --

VIi --- _- - -- \ -.. ilc

VTim

finie

FIgm 6. A Link Failure That Induces Inconsistent Messagus

Even if heavy channel coding is used there is still the possibility that the receivers obtain differeat results. B might
be able to recover the data while C might detect an unrecoverable error. The results are still differeat.

6.3. Exchange of Data Can Provide Consistency
In order to provide consistency it can be proved that data must be exchanged between processors. Figure 7 is a simple

model for the distribution of a dual-redundant set of sensors to three processors. Fault sets are shown with dashed lines,
so in this case the sensors are in their own fault set. Frequently, I/O devices are associated with a particular processor, so
the input fault set might be the same as the processor (i.e., if the processor Wi then the sensor fails). We will deal with
this case in a moment.

A simple cross strapping of these inputs, as shown in Figure 8 can lead to the types of inconsistencies described in the
previous section. A failure of one the sensors such that it produces inconsistent data to the three processors could induce
the divergence of all three procemors.

Figure 9 shows how a single round of data exchange for each sensor can solve this problem. In the case of a failed sesor

all of the processors exchange the vaue they obtained among themselves. The failure of the sensor is quickly identified
because the Anal voting stage shows a complete inconsistency. Other failures of the seao that do not lead to inconsistent
outputs are caught by subsequent FDIR algorithm. Note however, that ail FDIR al-orithms are us* prciiely tie me
data and will compute precis* the same resuit. U a processor fails and broadcasts garbage information, this will be
caught by that processor voting out. if this data exchange is performed on every unique input to the system, then all
fault-free processors will have identical interal states. This, of course, assumes that the processor. have the same initial
state. A sticky issue that we will defer until the sequel

Smultsaneous Seamor and Procemo Falue
Some systems get as far as providing these data exchange mechanisms, bat with a serious defect. This defect arises

when the processor and sensor fail simultaneously. Crtaily a triplex system does not puarantee correct operation in the
prmence of two failures. Many times, however, the sensor is an 1/O device of a particular processor. The procesor samples
the ssor, broadcasts the value to the other procassor, and then enters a round of data exchange.

But if the processor has failed then it can produce inconsistent dafa during the initial broadcast and then again during
the data exchange. Figure 10 shows how this can lead to the divergence of the two healthy processors. Certainly, procesor
hosted I/O devices need to be supported. Is there some other exchange mechanism that will work? Without another fault
set the answer, unfortunately, is no.

Required Level of Redudeny
We ar wed to redundant systems working on the *msjority priaciple'-a system containing 2f + I procesors can

sustain f simultaneous faults. As long s there is maorty of working procemors we should be able, through simple voti
logic, to separt i the good from the bad. Results from testing theory bear out this lower bound.

Unfortuately, solutions to the Dysastine Generals Problem have proven that a ysltem mint contain at least 3f + I
failu-reindepeadent module ian order to support the consistent distribution of data ia the presence off simultaneous haltsl

ta .i i

-r- 5 .- -

"L__ rol III / 1 I

Ow I cdtindant

1 St
Scnsojr DATA

- - r

F" -, t

DIS,~/m I,, RIUI i

'rhleni: t-r . ne .rp

i utfault set e e

--es -- /,gt l g IC

patcptdi h dt ecane Tiprite thepromo frm crrutin th daaascn ie iue1 hw

rrcvo C

Problee fsor awherythe process rteors x bud SNx i S eNy

Fge g Thi s e Generic Problem of Distributing Redundant Sensor Data

Which bounds a te correct? They both are, within their assumptions. It should be obvious that we reay don't need
more than 2 + inres edeofent processors to obtaineld a total of 3 c+ k are required to maintain
consistent inputs. The key o herion s tat ad taut sets need not be processors.

Restoring Stags

The root of the problem illustrated in Fire i 0 is that the am fault set tht sourced the original inoT ation also
participated in the data exchang. Tqi permitted the p trom corrupting the data a second time. Figure I I shows
la simple solution whereby the processor reads the information but t sareset that subsequently performs

the data exchange step. This simple device performs a restrn fuction on the original data Its only funct is tom
its input and broadcast whatever it believed it read onto its output. In some sense this device is a simple rea r.

We don't mean to treat tars property ihtly. Up sef-clocking asynchronous data protocos are used the restoring
functio requires a great deal of care such that a bad input clo does not yel a bad output clock. Here, the restoring
function must attempt to interpret the data and then rebroadcast it a ofnst its own clock ferene.

Notice that this solution s a total o six fault sets whereas the theoretical bounds only requite four. The argument is
that the restoring functions a quite b bit easier to implement than processors. This is the approach o Dramer Laboratory's
FTP which call the restoring futions inerotitM Other deins , no te the Stanord Resea institues SiT systemactual, employs general purpose processors for the function.

lImplied Synchronization

The e data exchange algorithms e predicated upon the aumption that all processors are somehow sychoieer.This is the stream model of data prosnled in Section 2. If thme input were &Bowed to be limed among the diffeet
processors then the data exchnge woeld clearly fal. More simply, think of the sesor as ben sampled and converted
into digital form. It is this padicuar mpnle tha we wish to exchange and mak comitet. Thus all processors mut
know precisely which piece of data is being e chisagd. This can onl happen if the processors wre running frame orclk

.'synchronousl. hn the cuse of frame sytihrnato, exchgs m e expected to take place at given times during the frame
,,cycle. In fact the data exchanges act a natua syncironization points in the proglram. These wre not suffciest, however.

A correct method of procesor synchroniation will be give in the next section.

am. ...,im.-_+ + +- +- . T" I

- Ul Se 1

3-6.3

5. - - - - -

Figus" 3. A Rasardous Solution to Sensor Distribution

6MAINTAINING SYNCHRONIZATION

SUPPOne that in the cours Of a given computation the processors need to read a set of redundant sensors, may one
sensor attached to each processor. For each sensor value a consistency exchange must take place. Because the processor
must uam results from one another, they must wait until all of the answers from the current exchange have been received.
Some processors may reach the exchange point soone" than others. How long should a proceor wait for that is not
responding? Uf some hard timeout limit is imposed then we must ensure that only faulty processors will timeout. This is
the a'ahaisation proble.

Ud. A Commnois Design Flaw
Cemmon solutions involve the exchange of a synchronisation discrete. The F-8 DFBW system employs the following

synchronfisation algorithm jID,.
'Every 2D milliseconds an internal, clock interrupt occurs and the computer ise a discrete high signal
to each of the other computers. The computer then reads the discrete. it has received from the other
computes, the discrete isreet, and a send read is peformed to ensure that the other computers
have also rest their discretes. Tis process accomplishes synchromiation. The computer Clock. rseet
to interrupt the next cycle time. If, aller a short wait to allow for skew between the processors, one
computer faile to synchroniae with the other two, the two remaining computers exit the synchronisation
program aSd continue normal processing.'

Although it is nofted that the algiorithmi proed well under quite extensive tests, it does poses a single-point fare
mode. Irur 12 show a simple example where a failre in one processor can case the other two to lose synchronization.

Is this example, processor A.i normaally the slowest, followed by C and then B. Normally, the phae-locking property of
the above algorithm hoep all procemors in synchronisation, paced by the slowest processor, A. Suppose that A experiences
diculty with its hnput/Outpat snlhlystem-perhaps a bad power supply. This causes A to put out marginal signals in such
a way that C sAil am A's synchrimiaation discrete, but B only an spurious signls whenever it enters the synchronisation

boasmBlepenspective paoomor 0 isowest so O's iming is derived ho 0as keg as Cisw*Ain the tinsot
window. Fam C'* petepectiv, processor A is the slowest so it's timing is derived from A. It is now perfectly possible for

j the slowasm of A to pall1C oat of B's timeost window. When this happens B considers C tale and jut syachrusives

II

3-1 1

Ilul Set A

c Pr'ocssor A
1,11,10 v II 1,. o e c

I 6I

Figure 9. Dat Exchange Provides Correct Senor Distribution

with A. Similarly, C considers B failed and also synchronizes with A. Now suppose that A finally fails har'd over-the
entire system loses synchronisation.

Thbis isn't a problem with the alorithm. No alorithm can be free from single point synchronization failures with only
three fanit sets (proessors). The problem is inherent with the system architectur.

6.2. A Correct Implementat-on of Multiprocesor SynIronistion

:+ The problem of distributing time in a system subject to faults is related to the Byzantine Generals problem and is alsosolvable. The solution is remarkably similar.
Suppose we lightly modify the synchronizer described above such that it selects midoralue edge to synchronize from.

i We then introduce a delay equal to the ma.ximum expected skew before proceeding. This is show in Figure 13. Ia the
cae where all synchrioi n discrete are con tent distributed, the procsors resynchronize to levels equal to the
intrinsic skew in the synchronizer, not the original skew among the procinor. Notice that a faulty procmor, however, can
induce the two healthy procem ors to missynchroN ze only by an amofnt equal to the skew between the good processors.
The problem is that after each synchronization this error is ccumulaited, ultimately driving the good processors out of
synchronisation.

As in the case of data exchange, we can correct for this inconsistency by introducing a second level of synchronisation.
This is shown in Figure 14. The ak a lysis of this is quite simple. A sinle failure cn only act one or the other
synchronization echanges. if the f level ha s cr a problem then the ducrete presented to the second level will be bouded
by the skew among the healthy processors.

The two-level alorithm its niely with the restoring st conept. The frost set of nd-value seletors is implemented
by the retoring stage. The second set occurs back at the procesors. Prom an engineering standpoint the topology of the
interconection is no more complexr the nhat required to support data exch se from oay processor, althou.h a partcular
exchneonly uses a subset of the first eteof comunicatiob links. It is even possible to make all data exchanges so tht

they automatically resynchronize the processors. We defer the discussion of such tricks to the sequel.

-_,m.w

-- - - -----

I 2

I .b,,I .S. I A 1

~1

t4 Processor A

6.46.

2. CONCLUSION

The management of sophisticated modular redundant systems is really a problem of managing complexity. It is possible
to handle the complexity by suitably decoupling the problenm of developing algorithms for a highly reliable system from
those of providing a correctly operating vehicle on which to execute these algorithms.

Systems that do not require exact agreement among redundant channels, what we have termed data asynchronous, do
not permit this decomposition. Data synchronous systems, however, can provide general purpose techniques for managing
digital computer redundancy that lead to policies that are independent of the target applications. Certainly a control
system is not just compose of computers and their interconnection. Redundancy management of ensors and actuators
must always be performed-but these solutions can be made asuming that the algorithms themselves will always execute
correctly.

Systems whose redundancy management i ensitive to the type of applications he performed will have great diiculty
adapting to mre and more complex functions. Data synchronous system provide the only viable path for future systems.

di

src
mus always bepromdbtteesltoscr-emd suigta h loihstesle ilawy xct

corecly

Processor AIkIt rocwA

-e I'

Figure 11. Dedicated Restoring Stages Add Hardware But Improve Performance.

REFERENCES

III G. M. Papadopoulos, "Design Issues in Data Synchronous Systems," Apird Lecture Series No. 143, October 1985
(21 M. Pease, R. Shostak, and L. Lainport, "Reaching Agreement in the Presence of Faults,' Journal of the ACM, Vol.

27, No. 2, April 1980, pp. 228-234.
131 L. Lamport, R. Shostak, and M. Pease, 'The Byzantine Generals Problem,' ACM Transactions on Programming

Languages and Systems, Vol. 4, No. 3, July 1962, pp. 382-401
[41 A. L. Hopkins, Jr., et ./., "FTrMP-A Highly Reliable Fault-Tolerant Computer for Aircraft,' Proceedings of the

IEEE, Vol. 66, No. 10, October 1978, pp. 1221-1239
151 D. Davies, J. F. Wakerly, 'Synchronization and Matching in Redundant Systems," IEEE 7asactions on Computers,

Vol. C-27, No. 6, June 1978, pp. 531-&39
[61 L. Lamport, 'Time, Clocks, and Ordering of Events in a Distributed System,' Communications of the A CM, Vol. 21,

No. 7, July 1978, pp. 5W58-0
[71 W, M. Daly, A. L. Hopkins, and J. F. McKenna, "A Fault-Tolerant Digital Clocking System," Dig. 3rd Int. Symp.

Fault-Tolerant Computing, IEEE Publication 73CH0772-4C, .June 1973, pp. 17-22.

rS T. B. Smith, III, Synchronous FaultTolerant Flight Control Systems,' C. S. Draper Laboratory Report P- 1404, 1982
91A. L. Hopkins, *Fault-Tolerant Systems Design: Broad Brush and Fine Print,' IEEE Computer, March 1980, pp.

3D-46.
110[K. J. Szalai, &. R. Larson, R. D. Glover, "Flight Experience with Flight Control Redundancy Management,' Fault

Tolerance Design and Redundancy Management Techniques, AGARD Lecture Series No. 109, October 1980

This paper was set in Computer Modern Roman 10 point by the author using the 71 X typesetting system. The
paper was printed on an Epson FXIOO+ driven by an IBM PC/XT. Line drawings were created with ILLUSTRATE on a
Symblc 3670 Lisp Machine and printed on a Xerox Dover laser printer.

14

Timing Seen By Processor B - Prcsor (is se; s;i-es. nc'
U!onid (s/njs t,w mtUe tinivtg . mii

Diagnose Cas Fadled

F'r,,essor. Slibps

Timing Seen By Processor C - Processor A is seen oi slowest. toi igs Jeritvedfrons I

Diagnose 8 as Failed

F~ure 12. Singl Point SYnchzoaiiation Faihire in the F-8 DFJBW

.Sheb, , I/Ac hj', hwI'l 1tn

se(A

(lock 't

F - e t (1-T

(lock - 'i,

PIgur 13. A OafrLeveI SYuchroelnztion Algorithim

_ _TIT,

1) ~~~~ ~ 3 '5.0- - -

- -- e

- - - - - -If S et

/C$
loc vote"lle Del"

Software Fault Tolerance Experiments

T. Anderson and P. A. Barrett

Centre for Software Reliability
The University of Newcastle upon Tyne

Computing Laboratory
Claremont Tower
Claremont Road

Newcastle upon Tyne NEl 7RU
England.

June 1985

Summary

A major experimental programme has been undertaken at the University of Newcastle upon
Tyne in order to evaluate the effectiveness of software fault tolerance techniques in
practical systems. This paper presents the results of phases two and three of these
experiments, which indicate that the techniques ca) significantly enhance software
reliability. The particular application used for these experiments was a naval command
and control system, thus confirming that software fault tolerance can be successfully
utilised in critical real-time systems.

Introduction

The process of software development is usually described in terms of a progression from
user requirements to the final code, passing through intermediate stages such as
specification, design and validation, Of course, progress through these stages is rarely
unidirectional, and *final code" must be considered to be a misnomer given the demand for
subsequent software maintenance. An engineering approach to software develoment should
enable software to be produced on time, within budget, and in accordance with user
requirements. One important aspect of theme requirements concerns the reliability of the
software. Software reliability requirements can be expressed in a number of ways, of
which the simplest is perhaps to impose an upper limit on the measured rate of failure
over a specified interval.

Given that reliability criteria can (and should) be imposed on software systems, how can
these standards of reliability be achieved? Fortunately there is a wide range of
techniques available to the software developer, all intended to enhance software
reliability. These techniques may be categorised as follows [71:

1. Techniques to avoid making mistakes - much as design methodologies and notations -
referred to as fault avoidance.

2. Techniques to find and remove mistakes - such as design reviews, code inspection,
program analysis, testing, verification, all followed by debugging or redesign -
referred tosas fault removal.

3. Techniques to cope with mistakes - defensive programming based on redundancy -
referred to am fault tolerance.

The major obstacle impeding the construction of reliable software according to
engineering principles is the shortage of data on the effectiveness of these various
techniques. This is particularly the case for software fault tolerance techniques, where
experience is limited and most experimentation has been confined to relatively small
modules. However, a recent paper [11 reported the results of a first phase of
experimentation with a system of realistic size implemented using software fault
tolerance. This paper presents the results from two further phases of experimentation
from the same project.

overview of Project

Only a brief summary is presented here; further details may be obtained from project
reports 12,31. in order to evaluate the effectiveness of software fault tolerance
techniques a re.0 istically scaled software system was implemented by professional
programmers to approved commercial and military standards. The actual application
selected provided a subset of the functions of a naval command and control system. Three
types of sensor input were used to generate tracking information on objects in a
simulated tactical environment. This information was presented to a human (or partially
automated) operator via visual display units. The operator could then initiate a *VECTAC"
- avectored attack on a hostile submarine by means of a torpedo launched from a
hel ico0pter. The command and c ont rol system comprised about 8000 lines of CORAL code
running under the control of a MASCOT operating system 14]. This executed on a POP-11/45
and interacted with the environment simulator system running on an LSI-ll/23. A second
PDP-11/45 provided data recording facilities and other support services. MASCOT provides

psedo-aralelexecution of concurrent activities (14 separate processes in this
system). Activities can only communicate by means of shared data areas maintained by

MASCOT according to the system designer's stipulations on access paths and methods.

Software fault tolerance was incorporated in the command and control application
softwar'e , in the form of acceptance tests and alternate modules. These were usei to
provide recoverable "dialogues" between activities. A dialogue is an explicit embodiment
of, and notation for, a restricted form of the concept of a "conversation" [5) which is,
in turn, an extension to concurrent systems of the recovery block technique for software
fault tolerance [61. Further information on these, and other, methods of providing
tolerance to software faults is available elsewhere (7,81.

The MASCOT operating system was modified and extended to provide recovery capabilities
for activities and for information recorded in the shared dats areas. These recovery
mechanisms utilised a special purpose hardware device, called the recovery cache [91,
which enables state restoration to be performed very quickly (the recovery cache may be
thought of as providing a highly optimised implementation of checkpointing for multiple
processes).

Experimental Programme

In order to measure the effectiveness of the software fault tolerance techniques in
enhancing reliability a series of experimental runs were performed using various tactical
scenarios to drive the simulator system. Three phases of experimentation were conducted.
The results and analysis of the first phase have been reported 11,2]; this paper presents
the data obtained from the second and third phases and analyses this data to obtain an
assessment of the effectiveness of software fault tolerance.

For each phase of experimentation the application software was frozen; that is, no
changes were made to the command and control software during a phase of the experiments.
However, the first phase of experiments involved two versions of the command and control
system. In version one the software fault tolerance was enabled and operated normally,
whereas in version two, fault tolerance was disabled by the simple expedient of forcing
all run-time checks to return a positive (ie ok) response. Thus a comparison between the
two versions enabled a direct confirmation to be obtained of other measurements made of
the improvement in software reliability. For phases two and three it was felt that our
knowledge of the system was adequate to dispense with this confirmation, so all runs were
performed with fault tolerance enabled.

In the second phase of experiments the same command and control software was used as for
the first. In part, the intention was to confirm the results of phase one. More
importantly, however, the first phase identified numerous problems with the MASCOT
recovery software, and these were corrected for phase two. Since the success of the fault
tolerance techniques is dependent on the recovery mechanisms, the results from phase two

should more accurately reflect the benefits possible from fault tolerance in practice.

In the third phase of experiments, the command and control software was modified by
replacing a number rnf modules with new versions written by inexperienced programmers.
These versions we. x!,ected to contain a greater number and wider range of faults than
the original module. r rthermore, where original modules were retained, the sequencing
of alternates in recovery blocks was reversed, so that the back-up alternates were used
as primary alternates (and vice-versa). Any faults in the recovery mechanisms identified
during phase two were rectified before phase three.

Two f,,rther phases of experimentation were envisaged, and one of these was attempted. The
intention was to evaluate the effectiveness of the fault tolerance techniques at higher
levels of software reliability, and to this end, all faults identified in the application
system during phase one were rectified to yield a more reliable version of the command
and control software, Unfortunately, this system proved too reliable, in that failure
data was generated much too slowly. This phase of experimentation was therefore
terminated unsuccessfully.

Time and financial limitations precluded the last phase of experimentation, in which it
was planned to utilise an unreliable version of the application system derived from
incompletely tested modules which had been archived during the development of the command
and control software.

Each phase of experiments consisted of a number of runs (60) of the command and control
system in which tactical scenarios were enacted on the simulator. Elcn run was monitored
by the support system, and was carefully observed by an operator. Each time an event
oc curred (an event is either a system failure, or the detection of a real, or imagined,
error in the state of the system) the entire system would halt, and the operator would
analyse the error and attempt to identify the fault which caused it. The run would then

S be continued to see if fault tolerance would enable a failure to be averted, or if the
failure would nevertheless occur. A run was considered to have finished when the scenario
was completed, or when a failure occurred which prevented the system from continuing.

Experimental Programe Results

In order to analyse the data from each run it was necessary to determine whether or not
each event would have resulted in failure had the system contained no fault tolerance
features. Usually the answers to such questions were obvious, but had there been any
doubt surrounding the outcome of a particular event in a non-fault tolerant system, the

4-1~
option was available to run the system in non-fault tolerant mode and attempt to re-
create the event in question. The effects of the event would then be directly observable.
This was not found to be necessary in phases two and three of the experiments.

The tollowing categories were used to group events:

1. Events which produced recovery which averted failure.

2. Events in which recovery occurred unnecessarily, but no failure resulted (usually a
consequence of a faulty acceptance test).

3. Events in which a successful recovery took place, but the system failed
nevertheless, as it would have done in the absence of fault tolerance.

4. Events in which recovery was attempted but was not successfully accomplished, and
the system failed, as it would have done in the absence of fault tolerance.

5. Events in which defective recovery caused the system to fail.

6. Events in which the effect on the system is unclear.

Events in category I yield an improvement in reliability due to fault tolerance whereas
those in category 5 result in a deterioration in reliability (those in categories 2, 3
and 4 do not affect reliability).

Two cases are considered; firstly a summary of all events, and secondly a summary of the
first events which occurred in each run. This distinction is made to factor out any
effects which might arise due to including events which occur after a non-fault tolerant
system would have failed.

Summary of All Events Phame 2 Phase 3

1. Recovery averting failure 34 91

2. Unnecessary recovery 6 4

3. Recovery followed by failure 5 4

4. Defective recovery 18 17

5. Failure caused by recovery 40

6. Outcome unclear I1

Total Events: 68 117

Summary of Firmt Events Phase 2 Phase 3

1. Recovery averting failure 20 24

2. Unnecessary recovery 3 4

3. Recovery followed by failure 1 0

4. Defective recovery 10 5

5. Failure caused by recovery 3 0

6. Outcome unclear 01

Total first events: 37 34

Analysis of Results

The principal measure of the effectiveness of software fault tolerance was taken to be
the "coverage" factor of these techniques: that is, the proportion of failures which
would have occurred in a non-fault tolerant system which would be successfully averted by
means of fault tolerance. To be more precise, for situations in which the non-fault
tolerant system would fail, coverage represents the probability that the fault tolerant
system will nevertheless continue to operate without failing. The required probability

77 can be easily estimated from the data of the previous section and thus relies solely on
event counts. The coverage factor is calculated em the ratio of the number of failures
averted (event category 1) to the number of potential failures (event categories 1, 3 and
4). Events in category 2 (spurious recovery) and category 6 (unclear events) are
disregarded. Events in category 5 (failures introduced by fault tolerance) cannot be

inored, but are excluded from the initial calculation.

Thus, considering all events in phase two of the experiments the coverage achieved by
fult tolerance is estimated to be 3 /57, which is approximately 0.60. This is the

4-4

max imum l ikelihood estimate. A Bayesian analysis using the Beta distribution indicates
tha t the value estimated can be asserted to exceed 0.52 with 90% confidence. These
figures should be abated to take into account the four failures caused by fault
tolerance. The simplest approach regarda these failures as "own goals- and subtracts them
from the successes of category 1. An amended coverage estimate of 0.53 is then obtained.

The following table presents these coverage estimates for all three phases of
experimentation, those for phase 1 being included for comparison and completeness. The
estimates have been calculated for the two sets of data, namely all event data and first
event data.

Failure Coverage by Software Fault Tolerance

Phase I Phase 2 Phase 3

All Events

Raw Coverage 0.75 0.60 0.81
Bayesian 90% point 0.67 0.52 0.77

Abated Coverage 0.68 0.53 0.81

First Events

Raw Coverage 0.44 0.65 0.83
Bayesian 90% point 0.29 0.53 0.74

Abated Coverage 0.25 0.55 0.83

To obtain an absolute measure of system reliability, the execution time of the system was
recorded for each run and summed over each phase of experimentation. This enabled the
failure rate for the command and control software to be estimated as 1.36 per hour in
phase 1, 0.88 per hour in phase 2 and 0.58 per hour in phase 3. A coarse comparison can
be made with the failure rate of the non-fault tolerant system in phase 1, which was 3.21
per hour.

Discussion and Conclusion

The results of the previous section show clearly that for this application, in these
experiments, the incorporation of software fault tolerance has yielded a substantial
increase in reliability. Over the entire programme of experiments, the event counts show
that 222 failures could have occurred due to "bugs" in the software of the command and
control system. But of these 222 potential failures only 57 actually happened - the Other
165 were masked by the use of software fault tolerance. This represents an overall
success rate of 74%. (The same calculation restricted to first events yields the slightly
lower figure of 67%.)

Examination of the results from the first phase of experiments [ll suggested that much
better results could be achieved if the underlying recovery mechanisms could be brought
to an adequate standard of reliability. Essentially, the project was relying on prototype
recovery mechanisms (the recovery cache and the MASCOT recovery software) to support the
provision of fault tolerance at the application level. This situation would most
certainly not be typical of an operational system where the recovery facilities should be
at least as reliable as the hardware itself. It was hoped that improvrak~nt to the
re covery routines for phase 2 would produce improved results, but in fact this erfo.?-t was
no t observed until phase 3. Projections suggest that with further improvements to the
re covery software a coverage factor of over 90% could have been achieved.

The discrepancy between the results for all events and first events is very marked for
phase I but is minimal in phases 2 and 3. The most likely explanation is that the all
events results for phase 1 are rather better than they would otherwise be as a result of
multiple recovery successes occurring in sequence. This phenomenon did occur in one
spectacular case in phase 1 where a series of 12 successf :1 recoveries in rapid
succession helped boost the figures (and, to some extent, project morale).

Of course the reliability gains were achieved at a cost, paid in capital costs to support
fault tolerance, development costs to incorporate fault tolerance and run time and
storage costs to sake use of fault tolerance. These costs are presented and discussed in
the earlier papers [1,21. Very briefly they involved 1000 hours of capital development,
60% supplementary development cost for the command and control system, 40% run time
overhead and 35% extra storage. All these figures (except perhaps the last) are likely to
be on the high side, reflecting the novelty of the techniques, their widespread use for
this experiment, and the omission of any fine tuning or optimisation of the system.

Our overall conclusion is that these experiments have shown that by means of software
fault tolerance a significant and worthwhile improvement in reliability can be achieved

- at acceptable cost. We look forward to an independent confirmation of this result,
preferably in the context of a system to be used in earnest.

10I

..- - *

4-.

References

[1 T. Anderson et al., An Evaluation of Software Fault Tolerance in a Practical System,
To appear in Digest of the 15th. Fault Tolerant Computing Symposium, Ann Arbor,
1985.

121 T. Anderson et al., Fault Tolerance Project Report: Results and Conclusions from the
Experimental Programme, Project Report ref. 4844/DD.17/2, University of Newcastle
upon Tyne, 1984.

[31 T. Anderson and P. A. Barrett, Fault Tolerance Project Report: Results and
Conclusions from the Second and Third Experimental Programmes, Project Report ref.
4844/DD.17/3, University of Newcastle upon Tyne, 1985.

141 Mascot Suppliers Association, The Official Handbook of MASCOT, Royal Signals and
Radar Establishment, Malvern, 1980.

[51 B. Randell, System Structure for Software Fault Tolerance, IEEE Transactions on
Software Engineering, SE-1(2), pp.220-232, 1975.

161 J. J. Horning et al., A Program Structure for Error Detection and Recovery, pp. 171-
187 in Lecture Notes in Computer Science 16, Springer-Verlag, 1974.

171 T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice, Prentice Hall,
1981.

[81 T. Anderson, Can Design Faults be Tolerated?, pp.426-433 in Fehlertolerierende
Rechensysteme, Informatik-Fachberichte 84, Springer-Verlag, 1984.

[91 P. A. Lee et al., A Recovery Cache for the PDP-ll, IEEE Transactions on Computers,
C-29(6), pp. 546-549, 1980.

Acknowledgements

This work was supported by the UK Science and Engineering Research Council and the Procurement Executive,
Ministry of Defence. Without the assistance of our colleagues D.Halliwell and M.Moulding these experiments
could nor have been conducted.

4
_ _ - -

Can Design Faults be Tolerated?

T. Anderson

Centre for Software Reliability,
Computing Laboratory,

University of' Newcastle upon Tyne.
December, 1984

Abstract

The fault tolerant approach to building a reliable system acknowledges that perfection is impossible
(or at best, very expensive) and therefore tries to cope with the consequences of residual defects within
the system. Fault tolerance has an established role in detecting and masking component faults in hardware
systems, but has also been advocated as a defence against deficiencies of design. This paper argues, in
question and answer format, the case for adopting design fault tolerance techniques in practical systems.

Introdnction

The short answer to the question posed by I e title Is "Y'es". A more cautious, and less simplistic,"
response would be that in certain circumstances, with appropriate provision of redundancy and allied
supporting mechanisms, it is certainly possible to provide a measure of tolerance to faults of design,
However, although this question imay serve as an appropriate title, and starting point for discussion, it
does not adequately address the significant issues concerning the application of fault tolerance
techniques to deficiencies of design. As is usually the case, the first, and perhaps most important, step
Is to ask the right questions. In this paper, I propose to substitute five further questions in place of
my title ind, in answering those questions, will argue the case for the use of design fault tolerance in
the development of reliable computing systems. In so doing I hope to justify the short and cautious
answer already given above.

The following discussion will largely be conducted with reference to the use of design fault
tolerance In software systems, since current techniques were devised primarily for use in software
development. tt is however, customary (and accurate) to make the observation that the increasing
complexity of VLSI designs suggests that software design techniques may also have a valuable contribution
to make in the area of hardware design.

Is there any need for design fault tolerance?

The traditional approach to achieving reliability in computing systems has largely been based on
fault prevention, the goal of which is to prevent system fsilure by ensuring that no faults can be
present when the system is in operation. There are two aspects of fault prevention, which may be termed
fault avoidance and fault removal.

Fault avoidance concerns those techniques which aim to avoid the introduction of faults during the
design and construction of a system. Since this approach may not be completely successful, fault removal
techniques are necessary to validate the implementation of a system and remove any faults which are
thereby exposed.

If fault prevention is not expected to completely eradicate faults from a system, then fault
tolerance techniques can be employed to provide a last line of defence. By incorporating redundant
elements it may be possible to ccpe with the effects of a fault during system operation, and thus avert
the occurrence of a failure (1).

The provision of tolerance to anticipated hardware faults has been a common practice for many years,
for two reasons. First, hardware is by Its nature built from physical components, and these are
susceptible to the introduction of faults arising from the natural processes of decay and deterioration
in the physical realm. Second, the effects of physical faults can often be categorised into wellI
understood "failure modes" for components, which greatly assists the selection of appropriate redundancy.
The first reason establishes the need for fault tolerance in hardware, while the second facilitates its
provision.

For software the situation is rather different. Software is by Its nature abstract rather than
physical snd not subject to faults introduced during operation by "Software rot" (contrary to popular
belief).- Of course, the representation of the software nay be corrupted by the effects of a hardware
fault, but that is a separate issuje. Thus, any faults In the software itself are design faults, due to
mistakes made during the development process which escaped the vigilance of fault prevention techniques.
It follows that the effects of software faults are difficult, if not impossible, to anticipate - which
makes the implIementation of techniques to contend with those effects somewhat more demanding.

Nevertheless, there have been a number of proposals which advocate the use of fault tolerance in
software. I would argue that the need for such techniques is, In principle, self evident. A wide range of

- techniques are available for fault prevention in software (including notations for requirements,
* specification and programming, design methodologies, validation and verification, management and support

environments ...) but though these may be highly beneficial, they certainly do not eliminate all faults
LI from programs. future software engineering developments may enable us to achieve such high standards of

software design that fault tolerance has no role to play, but I suspect this will only be the case when
either methanically checked formal verification Is possible and economsical for practical syster-. or

software can be generated automatically from specifications. Even then, the problem of inadequae or1.craeseiiatoswl ean

4A-2

Current techniques for building reliable software systems rely largely on -exhaustive testing", that
is, testing continued until either the project budget, or the software tester, is completely exhausted.

The diminishing return on investment from such testing argues forcefully for the adoption of a wider
range of techniques - which could sensibly include design fault tolerance.

Is design fault tolerance a mature technology?

A recent study in this area concluded that "all evidence indicates that fault-tolerant software
technology has progressed sufficiently ... to move out of the laboratory into practical systems" (2,
section 1 .4). That is, the technology of design fault tolerance has been extensively developed in
theoretical and experimental contexts, and is now ready to be adopted in practical systems.

To provide tolerance to design faults, redundancy must be extended to cover the design. Avizienis
terms this redundancy "design diversity" (3). Two different approaches have been proposed, namely
recovery blocks (44) and multi-version software (5). Although these are often viewed as distinct (even
competitive) methods, the differences are principally implementation issues rather than major
conceptual matters. Indeed, an elementary generalisation can be presented which encompasses both

approaches.

Suppose we have a software module M 1 which receives input and produces output as shown in figure 1.

inpu t M output

Figure 1 . Single Module

To provide tolerance to possible design faults in M I we supply independently designed alternative
versions M ...,M and apply one or more of these to the Input. We must decide which of the n possible
outputs is ?kctuallynto be used and so a selection must be made by an adjudication module A. This is
depicted in figure 2.

Figure 2. Design Diversity
The simple structure of figure 2, highly reminiscent of hardware NMR structures, is sufficient to

represent either recovery blocks or N-version programming. The only substantive generalisation is that
the form of the adjudication algorithm has not been specified.

In N-version programming, module A uses either simple majority voting, or inexact voting when
permitted tolerances on outputs preclude a unique correct output. Recovery blocks usually apply a fixed
acceptance test to the output in a predetermined priority sequence (Lee (6) suggested variant forms of
acceptance test) . Other adjudication algorithms are possible, of course, and have been suggested by the
authors of hybrid schemes (7,8).

The standard descriptions of recovery blocks assume sequential execution of M when required,
with the ability to regenerate an initial state, whereas N-version programming was envisagd a mlyn
parallel execution on multiple processors, with state replication. From a strict semantic viewpoint,
these are mere details of implementation. N-versions could be executed serially, just as the recovery I
block alternates could be performed in parallel.

The study of fault tolerant software (2) quoted above summarised the results of seven attempts to
develop software reliability models (most recently by Scott et al. (7)) for design fault tolerance
notations. Much of this work suffers from a lack of empirical validation, and depends heavily on
assumptions which may be questioned. Nevertheless, all the models do confirm the potential for
reliability enhancement which design fault tolerance offers.

- Other recent work has addressed the applicability and effectiveness of design fault tolerance in
real-time systems (9, 10) and in concurrent systems (11). Cristian has continued work on the
interrelationship of fault tolerance and exception handling mechanisms and notations (12). A lot of
earlier work on design fault tolerance has been sulsuarised elsewhere (1). It can surely be claimed thatthe conceptual development of' design fault tolerance has received considerable attention and is now well,
understood. But is it of relevance to the implementation of systems in practice?1

__o

_ _ _ . T

Can design fault tolerance be utilised in practical systems?

There are many Instances of the use of design fault tolerance in the software of practical systems
with high reliability requirements. However, this use is often ad-hoc, unstruc''ired and of limited fault
tolerance capability. It is usually referred to as defensive programming and is often flagged in the
software with the comment "This should never be executed but ...

Multi-version software has been developed for a small number of practical systems, usually at the
insistence of the relevant regulatory authority that the software should not constitute a single point of
failure. Examples are the slot and flap control system Of the Airbus A310 (13) and the flight control
system of the Boeing 737-300 (14i). Both of these systems employ dual dissimilar versions of the entire
software. Outputs are compared, and if a discrepancy is detected the systems revert to a passive mcde of
operation, alerting the flight crew. Similar approaches have been adopted in systems for railway

signalling (15) and nuclear reactor shutdown.

Perhaps the best known instance of design fault tolerance is that used in the NASA Space
Transportation System, the "Space Shuttle" (161. A single backup computer runs in parallel with four
primary computers. The primary computers execute the normal software system whereas the backup computer
executes an alternative version of software for mission critical functions. Error detection is performed
by comparison, voting, built in self-checking, and the ultimate acceptance test - the astronauts
themselves. A switch-over to using the back up software can only be initiated manually by the crew.

None of these practical systems makes use of design fault tolerance in the modular and hierarchical
fashion which is possible using recovery blocks or N-version programming. Hierarchical use of recovery
blocks has been achieved in a research project at Newqcastle (15), which has implemented a software system
of realistic scale to assess the effectiveness of design fault tolerance techniques (17). The actual
application selected supported a subset of the facilities of a naval cosmmand and control system, and was
implemented in accordance with commercial practice by experienced programmers. Approximately 11,000 lines
of program (written in CORAL) generated nearly 50 Kbytes of machine code.

Since the application was designed as a concurrent real-time system containing 14l separate
prucesses, it was necessary to devise a n~tation and mechanism supporting a form of "conversation' (4,11)
which would coordinate the recovery capability of interacting processes. The resulting structure was
called a dialogue (since this means a conversation of a formal or restricted nature) and will be
describedi in a forthcoming paper (18). Essentially, dialogues are used to define multiprocess recovery
blocks which are statically nested at compile time. Additional features facilitate their use in cyclic
computations.

An earlier form of dialogue, based on dynamic process structuring, met with little success and was
quickly replaced by the static form. Thereafter, the only difficulty encountered by the system developers
was i n devising the acceptance tests needed to provide run-time error detection. M.any of these tests were

selected without difficulty, but certain situations Caused problems. These were resolved by resorting to
a structural Consistency check of primary data structures. The overall conclusion of the system
developers was that the design fault tolerance techniques, though novel, were certainly usable in
building a practical system.

Can design fault tolerance improve system reliability?

Very little information is available as yet on the effectiveness of multi-version software in
practical systems, though most projects report that construction of dual versions was of great assistance
during development as a means of simplifying testing procedures. Similarly, only limited encouragement
can be drawn from the reliability models for design fault tolerance mentioned earlier. Of course, the
Space Shuttle diverse software provided perhaps the most famous bug ever recorded (161 by falling to
synchronise, and aborting the first launch. (Note that the fault toleranCe operated flawlessly on that
widely publicised occasion.)

Experimentation at UCLA with N-version programs (19) involved the implementation of 18 versions of
an airport scheduling program by students. All triad corbinations of these versions were evaluated as
3-version programs. In 27.1% of these combinations, two correct versions succeeded ni masking the faulty
computations of a defective third version. only in 2.5% of the cases was an incorrect result produced.
These experiments confirmed the positive results of preliminary evaluation studies (5) on N-version
programing.

Our a im at Newcastle in applying fault tolerance to the design of a naval command and control system
was to obtain a quantified evaluation of the effectiveness of design fault tolerance techniques in the

context of a practical system. When the software had been thoroughly tested and was considered ready for
"operational" use, a lengthy series of experimental runs was performed using a simulated tactical
envircnment and a variety of action scenarios.

A detailed analysis of these runs showed that on 53 occasions the software would have failed in the
absence of fault tolerance, but by means of fault tolerance, failure was averted In 40 of these
situations. Thus a failure coverage of 0.75 was achieved, and statistical analysis indicates that we can
be 90% confident that the coverage exceeds 0.67. A further 12 events were analysed, of which four were
ignored due to uncertainties In classification, four represented needless recovery, and the remaining
four events were failures caused by the use of fault tolerance, If these four failures are offset against
the 40 successes, then the notional coverage drops to 0.68.

The above analysis was guided by experience In running the command and control system In two modes:
with and without fault tolerance. A direct comparison between these two modes of operation provided
additional evidence of reliability enhancement. The Mean Time Between Failure for the fault tolerant
software was 0.74 hours whereas without fault tolerance the P4TBF was reduced to 0.31 hours (ratio 2.36).
The proportion of missions completed without failure was 560 with fault tolerance enabled, compared with
47% when fault tolerance was not eabled (ratio 1.19).

4.,-4

Many of the failures of the fault tolerant system would not have occurred if reliable recovery
mechanisms had been available, as would surely be the case if these techniques were to be used In
practice for a succession of different application systems. It' failures due to defective recovery are
eliminated the experimental results indicate that i failure coverage of 90% and a nine-fold improvement
in MTBF could be achieved. Almost 90% of missions would have been completed successfully.

Is design fault toleramoe a cost-effective means of achieving reliability?

This final question is the most pertinent, but unfortunately a definite answer cannot as yet be
given.

The results of the Newcastle project, summarised in the previous section, certainly indicate that
design fault tolerance techniques can yield a significant increase in reliability. But was this
improvement worthwhile? The reliability enhancement was achieved at a cost of: 60% extra in software
development, 33% extra code summary, 35% extra data memory, and 40% run time overhead (largely due to
additional synchronisation). These figures are probably on the high side, reflecting the novelty of the
techniques, the extent of their utilisation, and the lack of fine tuning of the completed system.
Furthermore, Increased development costs can be offset by gains from economics in software testing.

However, the ability to engineer the reliability of a system is not so much a consequence of the
availability of techniques for improving reliability as it is dependent on information concerning the
relative cost-effectiveness of those techniques. In order to construct a system which will have a given
level of reliability, within a fixed budget and adhering to project time-scales, the reliability engineer
needs to select appropriate techniques and apportion the amount of effort to be devoted to each. Only
when data is available on techniques of fault avoidance and removal as well as for fault tolerance will
it be possible to make a rational determination of the best mix of reliability techniques. In the absence
of such data (as is largely the case for software) I would argue for the eclectic approach. Optimal
solutions are rarely achieved by putting all one's eggs in one basket. A well-engineered approach to
building highly reliable software is likely to be based on striving for perfection, but at the same time
recognising that imperfections will still be present - and therefore design fault tolerance will be
needed to cope with them.

Conclusion

To provide a summary I reiterate my questions and answers.

Is there any need for design fault tolerance? Potentially yes, given our current inability to
achieve perfection.

Is design fault tolerance a mature technology? Yes, in the sense that it is well developed and ripe
for exploitation.

Can design fault tolerance be utilised in practical systems? Yes, this has been demonstrated.

Can design fault tolerance improve system reliability? Yes, experiments confirm that a substantial

improvement can be achieved.

Is design fault tolerance a cost-effective means of achieving reliability? A firm maybe. This is the
crucial question.

Refermeces

(1) ANDERSON, I. and LEE, P.A.: 'Fault Tolerance I Principles and Practice', Prentice Hall
International, 1981.

(2) SLIVINSKI, T. et al.: 'Study of Fault Tolerant Software Technology', Report to NASA Langley
Research Center, Mandex Inc., 1984.

(3) AVIZIENIS, A.: 'Design Diversity - The Chrllenge of the Eighties', Digest of the 12th Int. Symp.
on Fault Tolerant Computing, Santa Monica, 1982, pp. 44-45.

(4) HORNING, J.J. et al. : 'A Program Structure for Error Detection and Recovery' , in Lecture Notes
in Computer Science 16, ed. E. Gelenbe and C. Kaiser, Springer-Verlag, 1974, pp 171-187.

(5) CHEN, L. and AVIZIENIS, A.: 'N-Version Programming : A Fault-Tolerance Approach to Reliability
of Software Operation', Digest of the 8th Int. Conf. on Fault Tolerant Computing, Toulouse,
1978, pp. 3-9.

(6) LEE, P.A.: 'A Reconsideration of the Recovery Block Scheme', Computer Journal, 1978, 21 (4),
pp. 306-310.

(7) SCOTT, R.K. at al.: 'Modelling Fault-Tolerant Software Reliability', Proc. of the 3rd Symp. on
Reliability in Distributed Software and Database Systems, Clearwater Beach, 1983. pp. 15-27.

(8) SONERU, M.D.: 'A Methodology for the Design and Analysis of Fault-Tolerant Operating Systems',

Ph.D. Dissertation, Illinois Institute of Technology, Chicago, 1981.

(9) ANDERSON, T. and KNIGHT, J.C.: 'A Framework for Software Fault Tolerance in Real-Time Systems',
IEEE Trans. on Software Erutinsering, 1983, 38-9 (3), Pp. 355-364.

(10) WELCH, H.O.i 'Distributed Recovery Block Performance In a Real-Time Control Loop', Proc. of

Real-Time Systems Symposium, Arlington, 1983, pp. 268-276.

, a .. _ _ _

m I I !

4A-

(t!) CAMPBELL, R.H. et al.: 'Practical Fault Tolerant Software for Asynchronous Systems', 3rd
IFAC/IFIP Workshop on Safety of Computer Control Systems, Cambridge, 1983, pp. 59-65.

(12) CRISTIAN, F.: 'Exception Handling and Software Fault Tolerance', IEEE Trans. on Computers, 1982,
C-31 (6), pp. 531-540.

(13) MARTIN, D.J.: 'Dissimilr Software in High Integrity Applications in Flight Controls', AGARD
Symp. on Software for Avionics, The Hague, 1982, p. 36:1.

(14) WILLIAMS, J.F. et al.: 'Advanced Autopilot Flight Director System Computer Architecture for
Boeing 737-300 Aircraft', 5th Digital Avionics Systems Conf., 1983.

(15) VON LINDE, O.B.: 'Computers can now Perform Vital Operations Safely', Railway Gazette
International, 1979, 135 (11), pp. 1004-1006.

(16) GARMAN, J.R.: 'The "Bug" Heard 'Round the World', Software Engineering Notes, 1981, 6 (5), pp.
3-10.

(17) ANDERSON, T. et al.: 'An Evaluation of Software Fault Tolerance in a Practical System',
Technical Report, Uniersity of Newcastle upon Tyne, 1985.

(18) ANDERSON T. and MOULDING, M.R.: 'Dialogues for Recovery Coordination in Concurrent Systems'. In
preparation.

(19) KELLY, J. and AVIZIENIS, A.: 'A Specification Oriented Multi-version Software Experiment',
Digest of the 13th Int. Symp. on Fault Tolerant Computing, Milan, 1983, pp. 120-126.

_mm, m1-.- -mmmmm ml mm~

/ a-

DEPENDABLE AVIONIC DATA TRANSMISSION

0. . Powell J.C. Paladier

LABORATOIkE ' AUTOMATIQUE ET D' ANALYSE DES SYSTEMES DlU C N A S

31077 TOULOUSE CEDEX - FRANCE

This paper outlines the major constraints imposed on the design of dependable local area netaorks
for avionic systems and underlines the essential diffyrences in requirements thau exist aith
respect to those of ground-based (cavil) LANs. The different choices available to the system
designer are then discussed: technology (electrical or optical), architecture (bus or loop),
general philosophy (centralized or decentralized), medium access control (competition or
consultation) The paper then goes on to summarize too different and independent a/ionic LAN
research projects one which focusses on fault and damage-tolerance and the other on high speed

INTRODUCTION

Digital data transmission systems were in use in avionic applications before the term "local area
networks" mas coined The aims that such systems mere designed to satisfy were chiefly that of reducing
aircraft airing complexity and improving the ease with which the "integrated" avionic system could be
extended. Such systems include ARINC 429 in the civil aviation domain and MIL-STD-IS53 (USA] and CAb-T-i01
IF) in the military area. The basic versions of these early avionic LANs enable the direct connection of
at most 32 stations and operate at relatively Ion raw data rates (vi Mbit,s) over distances up to about
100 m. Moreover, the centralized requestresponse techniques used for controlling access to the medium
lead to an effective data rate efficiency of less than 50% as well as a considerable lack of flexibility
As with all new technical offerings, the very existence of such LAts has led to the development of
increasing numbers of new applications user requirements have thus become more exacting more stations.
more flexibility, more bandwidth and longer distances to extend their applicability beyond the ainic
field to, for instance, the marine area). Furthermore, user reliance on shared communication systems has
increased the importance of making these systems dependable.

This paper discusses the design constraints imposed on embedded real-time local area networks LANiIs
and the various options available to the system designer, Two different and indepeedvnt r-search pro)ects
on dependable avionic LANs are then summarized:

- RHEA: a hierarchical LAN for aggressive environments in which the accent is placed on the tolerance
of multiple faults due to physical damage,
- ANTINEA: a high-speed bus topology LAN in which the emphasis Is on high data rates and fast,
dependable recovery techniques.

I . DESIGN CONSTRAINTS

Local area networks for harsh real-time applications and. in particular. avionic applications must
satisfy a certain number of critical design constraints that are far more restrictive than those that
dictate the design of LAis for office systems, mainframe bark-end networks, indust'ial command-control
systems, etc. The considerable amosnt of work that has been invested by LAN stan'dardization committees
such as IEEES02 cannot be directly extended to the harsh real-time, on board environment due to the
required real-time characteristics, the particularities of this envitonment and the restrictions necessary
for practical utilization.

1.1. Real-tLme constraints

the fundamental difference between a real-time distributed system and other sorts of distributed
systems is due to what we call the "real-time sandwich": both the highest and loost layers 'if protool;
interact with the real-orld and must as such live with the basic rules of phsics. The highvst layer' (the
applicatiow layer) mast interact with one or more physical processes whose dynamics are dictated by las
imposing absolute contraints on the communication delays and the maxium execution ties of the
information processing system. iAt the other end of the scale, the lowest Lyer i the physical lay,r must
send and receive signals over physical transmission channels which are again goerned by a very; basic
physical law. the speed of light. This Imposes a minimum delay on the transmission of a signal over the
reguired distance (whatever the transmission data rate) which, in lure, fines a minimum oerhead on the
time required to access the channel at the medium access control layer. The delay-performance restriction
at each layer imposes delay restrictions on the neat upper layer and so on right up to the applicmtion
layer. The major problem of real-time distributed systems is to render all the protocol layers compatible
with the physical constraints imposed on both sides of the sandwich.

In this paper, ae are concerned only with the consequ,'nces of the real-time application on the deign
of the data transmission system or LAN ' layers I .i 21 One of the mist obvious -onstraints on a -al-
time LAN is that messa-4e transfer times landi thus medium acceass times; be "bounded" If the minimum
application time constraint is several orders of magnitude greater thus the mean and the standald
tmeaiion of the message transfer time then it as sufficient to ensure a "uohast"bound i (such as that

offered by a pure CoNACiEthernet) approach) for which the pribaility 'f this oend being exceeded is
non-ero but considered negligible If this is not true, then the medium access timn mast have a

in thin sense that, during normal fault-free operation, It is Possible to prove that
the application time constraints will be satisfied,

ma The application time cnwstrwints may be so demanding that certain application communication patterns
*may need to be organized as a single, uminterruptable transaction throughout which all resources must be

*0' "
____ ___ _ .;-sow-

ii

ic-in -J A Ch. LAN le nI, thl, lea-s to the notion of a .5mmand rsponse mode of messa-e transmission

heI -b the e.1,s1ne -,Issa-Je mIt be I 1ansmi ttd i mmodi t I I r the .,oire pondi nq command message The

,tation sI n, h omman, m Iy ceiir- to turther ietain ne rtansIissI on s' -ures to transmit a cotItIm

In ,rier to s!nc:hr'niio '.erat eal me, at i,,n, tneen tw,, or more t-sks such as inputting

tIme eol.cc. 'tao, ical-time cnstraInts ma
1

imloSe tho pros.in ,if a single. physical broadcast

t:.nhttn srrlre-more. the updatrng of , S5m state in formartin ma, nerd to be carried out periodically

lt o a on sittor or'sn-I the nominal update poriod Th:s leds to the -oqu i-ent that the LAN be capable

+Ji tCransferring a -ttamn number of Ler Irdic messages

Lastl, hut not least, most 'eA, rIeal-tine .,,-tne s aI-e priority dri ren; tasks may be Isslqned

dit'-c' nt fineI pIi"t' i es- their prioritie mar l .-" ' e ".eanalt'y In or"der to meet application

-loae.im, this task pivoritr, feature In tui n eads to the requirement that the LIN be capab Ie or

implmemnting Pge ept-tocttisse. Preferable, the message priority implementatIon should ena)Ie

maXiMum utlr1at In of LAN bandwidth by low-priority messa.les if no high-priority messages ace outstanding

and should minimize the time r-ulired for a high priolto message to preempt a low priority message

1 .2. Environmental constrai nts

Real-time LhNs must often oper'ate in demanng and e.en aggressive environment; this leads to quite

s-.io consti-aints on the transmission technolgy and LAN architecture

One of the most obvious constraints is that of electromagnetic compatibility. The real-time LAN
enoiionment is fall or sach nasty things as electri arcs, high-picer radio and radar transmissions and

in the military area, electronic eunter-meanurs, electromagnetic pulses and radiation The technologiy

chosen for the transmission medium and for the electronic equipment mast have a

btgbeeyng~otcfyrn~nof thin kind.

ither, less oboious constraints imposed by the environment include: resistance to moisture, high

temper-ature, fire, chemical spilling, rats, cleaning personnel, missiles. etc. Depending cm the nature of

the environment, the LhN might have to tte -tg phy!pc4.,4geagg possibly resulting in multiple, common-

mode faults

Of pacti-lar importance in the case of avionic systems is that the available on board electrical

power Is limited. During normal opertion, load-shedding may occur anereby non-critical equipment is

momentarily disconnected In the case of military systems, some equipment aweaponsI may be physically

ejected from the system Tthe consequence on the LAN is that its design mast take account of

gptain ieiogl I Ln the course of noAglo 9pg atlpD. The communication service offered to the other

stations should not be unduely degraded on occurrence of these normal erents

1.3. Exploitation constraints

One of the objectires of an! LAN, real-time or not, is to pruvide system flenibility and ecolutnitty.

This means that it mast be relati ely simple to r 'emoe and to add stations to the LAW In the case of a

real-time LAN, the reqiuired flcxibiluty I s aggravated by several aspects. Firstly, the addition of nem

functions may invole the installation and test of several nem pieces of equipment pith complen

synchronizatt - p tterns The system integrator fill prefer to carry out the installatlon incrementally;

the LAN mus' thus be able to function in spite of the ebsenceof tgtions that hace not ynt been tented or

that have been disconnected to allow diagnosis of the neh function Secondly, system diagnosis for instal-

lation .nd maintenance operations is conceptually easier if it can be carried out from a single point;

cqOenate -modys of LAN operatton and LAN monitoring would adoantageously simpllfy these operations

Thirdly, access to certain parts of the ,n-ironment ,part)cularly in the case of aIrcraft) can be

difficult and costly; alterations to the transmission cables may be impossible or beyond the scope of the

system integrator's responsibilites Consequently, it is preferable to envisage a pEeug r syue- in

uhich stations can be easily ronnected at any pY it and in an 4tbt1! Y qe

Parthermore, the applications of real-time LAWs almost al.ays require a hngfs ede hhe ,

Service interruption may not only lead to user "inconvenience" but could he catastrophic in terms of human

lives, cost, production or mission effectiveness. The LAN must thus itself be dependable

2. TECHNOLOQY: ELECTRIC OR OPTIC ?

The choice between the use of electrical cables Or optical fibers for physical signal transmission

within the LAI s iqportant and can not only dimension the physical siae and speed of the system and its

immunity to electromagnetic interference Id'Nervilly 8I but also strongly impacts the possible

architectural choices.

2. 1 . Electric c3 able technology |

The skin effect in electrical cables leads to losses that are proportional to the length of the cable

IL and to the square-root of the transmission frequency (Fi. This means that the maximum achievable

transmision distance with a given type of cable is inversely proportional to the square-root of the

maximum transmission frequency. The actual maximum product L, F
'

for a particular cable is itself
approximately proportional to the cable diameter.

In practice, for transmission rates of 0 to 50 lhit/s, small-dImension cables (3 to A mm. diameter

co-an) can be used over distances up to about 50 meters rmsrcraft in terrestrl, 1 or marine applications,

the weight of larger-diameter emblem (t to 1.5 cmr) is wo longer a limiting factor and such cables can be

uaed to cover distances of 200 to 300 meters. If longer distances meed to be covered then si-nal-repeaters

S.w -

"go

-I
5-3

become necessary

A, regads immnit! to electromagnetic interference, the utilization of electric cables requires the

selection of co-axial or tri -axial cables together with compatible connectors. Electric cable systems have

been implamented that are successfully immune to the severit/ of electro-magnetic pulse interference.

2.2. Fiber optic tec hno1ogy

The speed limitations of a filber-optic link depend not only on the characteristics of the fiber but

also on the transmLtting and receiving components. The temperature ranges over which avionic LANS are

reuquired to operate impose the use of LED transmitters and PIN-diode receivers. Even though optical fiber

is capable of transmitting at very high speed, this restriction of terminal devices in practice limits the

maximum transmission rate to about 50 to 100 Mbit,'s. with a judicious choice of wavelength and fiber

(1300 nm, graded-index fiber with 100 micron core), links up to several kilometers can be achieved at the

envisaged transmission rates.

However, if it is necessary (as in combat aircraft) to implement field-disconnectable sections of

optical cable then the losses introduced by the connectors (negligible in electrical systems) can greatly

decrease the maximum achievable transmission distance.

Of course, from the viewpoint of immunity to electromagnetic interference, optical fiber presents a

distinct advantage over electrical cable (especially in the future when the use of composite non-metallic

materials mill cease to offer the Faraday-cage effect of present-day aircraft), Unfortunately, the very

low signal levels at which the receiving devices must often operate implies that they constitute the

Achilles heel of fiber-optic links with respect to noise immunity.

Nith today's state-of-the-art and moth the presently required transmission rates and distances (in

aircraft), fiber-optic technology does not offer a distinct advantage over electrical cable. A wise

decision for the design of an avionic LAN would be to make it compatible with the use of either technology

(or a mix of both).

3. ARCHITECTURE: BUS OR LOOP ?

The to basic architectures for the realization of LANs are the ba the loop (other architectures

such as packet or circuit-switched mesbed networks have been proposed but suffer from the fact that

single-point monitoring of data transmissions is not possible). Common to both architectures is the

problem of appropriately choosing the protocol that stations must obey in order to access the shared

medium. In this paragraph, me discuss the specificities of these two basic architectures from a

transmission technology viewpoint.

3.1. sBu n rohitecture

In a bus architecture, stations are tapped onto a multi-point physical transmission medium. In its

basic form, this physical medium is passive but can be extended by means of repeaters or

arbiter/repeaters. Each station is in one of two states: the receiving state or the transmitting state

Nhen a station successfully acquires the bus (according to the appropriate access protocol), all the other

stations are able to simultaneously receive the transmitted signal (neglecting propagation delays). The

overh-ad in terms of preamble length to ensure receiver phase-locking is thus independent of the number of

connected stations; it is thus feasible (and usual) to carry out receiver clock synchronization at the

beginning of each message.

The main technological design problem in bus-architectures is that of configuring the transmission

medium and station taps in order to maximize the allowable number of connection points and to minimise the

effects of faults. In its simplest form, an electrical bus consists of a linear cable onto which stations

are tapped by T-connectors. Each T-connector introduces a cable mismatch; this introduces limitations on

the maximum number of connections and their relative positions. In order to remove restrictions on the

length of the stubs between the cable and the stations, active T-connectors can be envisaged but this

leads to a less flexible implementation in that active elements ust be embedded into the aircraft's

infrastructure. One very interesting technique that alleviates most of these problems is to use CATS-style

directional coupling onto a unidirectional cable. This doubles the amount of cable in the system but

offers considerable advantages:

- the taps are entirely passive,

- attenuation on the stubs is the only limiting factor as regards their length,

the bus can incorporate passive branches into damage-prone areas,

impedance mismatches due to cable or stub faults (open or short circuits) are not necessarily

catastrophic (depending on their location).

The use of fiber optic technology in a bus architecture leads to another set of problems that are

related to the attenuation Introduced by optical coupling and splitting components. Linear optical bus

topologies are very quickly limited by the attenuation introduced by bidirectional optical T-couplers and

it is necessary to resort to either m iter topology or a configuration using directional couplers similar

in principle to the CATI electrical technology mentioned above.

3.2. Loop a'ahitmatUZ@

In the basic loop archntecture, each station is connected to two other stwtione by point-to-point

Atransmission links in order to form a ring. Sinals are transmitted around the ring unidirectionally. Each

station may be in one of two states: the transmitting state in which it mends its own signal onto the

downstream link or the repeating state in which it relays signals received on the upstream link. In both

states, a station can decode signals received on the upstream link. One of the claimed basic advantmge of
, the loop over the bus to that signals are actively rkleyod; this means that the maximum transmission

-m4 - -

0.4

5-4

distance and the number of connected stations can be much greater than for a bus It also means that

physical links are point-to-point and thus better adapted to fiber-optic technology. Bowever, this active

signal regeneration leads to several disadvantages.

The first disadvantage us of course that the station attachment units must be powered. If poaer is

obtained locally from the connected station then the loss of a station implies that the loop is broken and

no further communication is possible. Other than independently powering the signal relaying circuitry,

several techniques (or a combination thereof) are possible in order to re-establish loop continuity after

station disconnection:

- station bypassing,

- braided loop,
- twin counter-rotating loops,

- bidirectional loop.

Station bypassing is the most basic technique (Penney 74): when a station is disconnected the

incoming signal is passively relayed onto the outgoing link. Fiber-optic implementations of passive

bypassing are possible but the number of consecutively bypassed stations is quickly limited due to the

extra attenuation that is introduced. A related technique, braiding, achieves bypassing by providing extra

links that interconnect non-adjacent stations lAmbrus 851; here again, the number of consecutively

bypassed stations is limited by the lump interval of the braiding links. The counter-rotating loop

approach [Zafiropulo 741 enables a single loop to be configured after the failure of a single station (or

a pair of inter-station links); the loss of several non-consecutive stations leads to partitioning of the

loop. Also, a pre-requesute to loop reconfiguration is fault detection and localization by means of a

possibly tame-consuming distributed diagnostic routine. The bidirectional loop approach (iolf 791 relies

on the use of an "oscillating" token access protocol when the loop is no longer continuous; each time a

station passes on the token, it inverts the dsrection of its signal relaying device: this basically means

that what remains of the loop is used more-or-less as an active bus with rather a long propagation delay,

thus losing the performance advantage of the original loop topology.

A second disadvantage stems from the fact that in order to relay incoming signals, the station

attachment unit must first lock its receive clock onto the incoming signal. If stations are required to

relock their receive clocks at the beginning of each message then two implementations can be considered.

If the delay in each station is restricted to a single bit (as in IEEE 802.5) then the required preamble

overhead is proportional to the number of connected stations since several bits of preamble are lost in

each station due to the required number of bits necessary for their receive clocks to resynehronize. If a

constant length preamble is regenerated in each station then the repeat delay in each station must rater

for the time required for the receive clock to resynchronize (Bean 851. In both implementations, there is

a considerable delay degradation due to the serial disposition of the stations in the loop.

As a consequence, loop architectures generally operate in a bit-synchronous fashion at the physical

level; whether transmitting or repeating, each station (except one is permanently locked onto the phase

of the incoming signal. One of the stations (called the active monitor in the IEEE 802.5 proposition,

assumes the priviledged role of generating the master clock signal In the event of station disconnection

or link failure, no useful communication is possible until every station's receive clock has been

resynchronzed.

If the active monitor should be disconnected (e.g. due to load-shedding then the duration of

communication service interruption is even longer since a ne monitor must be elected among the potential

monitors. In IEEE 802.5, the potential monitors are informed of the active monitor's health by means of

periodic poll messages. The time-out value necessary for a potential monitor to detect that the active

monitor has died must be greater than period of these poll messages; unfortunately, this period cannot be

too short or the loop would be overloaded with polling messages. In lEfE 802.5, the default poll period is

3 seconds and the default detection time-out is set as 7 seconds. Service interruptions of this magnitude

are totally unacceptable in a harsh real-time environment.

To summarize, the major reasons for which me exclude loop architectures are:

- the inherent difficulty of ensuring correct operation when several stations are absent .during
system integration or following station disconnection due to failure or load-shedding!,

- the excessive duration (in harsh real-time applications) of the communication blackout that results

when the loop must be reconfigured and resynohronized.

He should emphasize that, in our opinion, these reasons for reiectung loops outmeugh the advantages
that the basic fault-free loop architecture offers aith respect to performance (insensitivity to eauumum

system dimension) and the implementation of preemptive access priorities (by bit-flipping reservation

techniques).

4. PHILOSOPHY: CENTRALIZED OR DECENTRALIZED ?

4. 1. The oentraNi"atlon/decentra3.iation dichotomy

When Investigating the properties of distributed systems with respert to dependability, two

conflicting viewpoints can be considered:

- tt9!_&mgslIlt@ yLr.polnDt: if all functions are totally decentralized than redundancy us maximized
since the failure of , ny single entity cannot lead to total system failure,

-g the more that functions are decentralized, then the htqher the number of

entities involved and the higher the chances that the failure of one of them kill lead to total
system failure.

The key to tams dichotomy is the assumption that is made with respect to the consequences of a fault

in one of the entities. If one assumes that when an entity fails that it does so in a "nice" way whereby

errors are not propagated towards the other entities then the optimistic viewpoint is the correct one.

L/-iM _ _ _ _ __ _ _ _ _- .

-a--

5-5

Unf i'tun.t -l. Suy h an assumption ot "nice" failures is rather difficult to .ustilf.. On the other hand t,

predict that an entit. failure lull bring down the s s tem is a far too loomyy approach These d IegInq

HPewt'nts ,'dn be quantified mathematical b.. the n,tin ot c a ge whilch is defined as the pr'obubIit

tha t erorar, dt c td and confined. ndItioned on the fact that a fault has occurred The qesti,,n a

to Whi,,h or the aboce -i wpolnts wins out can oni. be answered in function of the assumed co eraue .alu.s

In a shared medium conmunication system ,loop or bus . one, of the essential sstemiuide functions is

that of ,ntiollini ac-cess to the medium: n this Setion we are concerned b, the degree to ahich this

function should be decentralized

4. 2. 1 i V IL u a r n 9c jf' r- c -r c r ' zA.rsoM ep i t c V emr- f Go

or path A.b 1 1ity

Two 5rts of LAN stations are considered

- master stations at least one master station kthe actice master) must be operational if the system

is to work correctly; if the actioe master fails then a nem actice master must be elected from the

other potential master stations,

- flaye stations. the confined) failure of a slave station does not lead to system failure, a slave

station is different from a potential master station in that the loquc required to become an active

master It either omitted or physicall, inactivated.

Totally centralized and totally decentralized systems are respectively those in mhich only one

station, or all stations, can assume the role of master

te define the fault-coverage of master and slave stations as p. and p. respectively and make the

important assumption that p. is less than p.; the reasoning behind thIs assumption is that when a master

station (active or potential) fails, the probability il-p. that It wllI do so in such a way as to precent

system recooery is higher than that of a slave station because the enabled logic In the latter is less

compleu than the former, The non-perfect coverage means that there is point beyond Which the additional

probablit, of system failures due to an eltra master station outmeauhs the fact that there is an

additional spare ttliffler 781.

Let M be the, total number of stations (master or slave), m be the number of master stations and P be

the station reliablity iassumed equal for master or slase). Disregarding failures of the physical medium.

the path reliability R., between a pair of slave stations is gioen by:

P., = R' . ((I v p. (l-f)1 - _l-R)) , I R o p.. -I i) -2

Pr(both sta- Pr(at least one master OK Pr(other slaves OK or

tions OK and others either OK failed with correct

or failed with correct error confinement)

error confinement)

Similarly, the path reliabilities between a pair of master stations R., or a master station and a

slave R., are given by:

R- R' . R + p, . _1-) I* . R + p,.(1 -R) I

R.. = ha. I R p.. (1-R - . R + t-h)

Thus, the mean path reliability FP betmeen an arbitrary pair of stations can be expressed as follows:

I

PP =- . I Wtm-1R.. + 2m l.-F.t. . (-mI(M-m-1... I

M(W-1)

Figure I whows the path un-reliability (I-RP) plotted as a function of (t-peep.) for fired values of

p., R and N and for various values of a. For p* greatmr than 0.9996 I left of point A), the path

reliability is insenmitie to the number of master stations as long as therm are at least two. As p.

decreases (right of point A, the totally-decentralized solution (m50) becomem worse thaw the partially-

decentralized solutions and at point A (corresponding to p.=0.9799) it becomes mors than even the fully

centralized solution. Space preventm us from showing other curves for different parameter values but it

should be noted that low values of R (i.e. long mission times) favor the fully decentralized approach.

In conclusion to this discussion on decentralization versus centralization, in systems with short

mission times or where repair is possible, the extra redundancy brought about by a high degree of

decontralization may not only be unnecessary but in some cases harmful to overall system dependability.

Ce 5. MIDIUM ACCESS CONTROL: COHPETITION

OR CONSULTATION ?

Medium acceso control (MAC) protocols for both busses and loops may be classed into too categories:

go- lalgo-ormcole: stations consult each other by means of special-purpose messages or Sub- f
friae in order to decide which station hes the right to transmit; the "right-to-transmot" to

exchanged in an orderly, synchroniaed fashion In order to avoid conflicts,

. ... _5
• _ _ _ _ _ • ..

5-h

- QQmlptltmpc ql yCy : stations that aish to send a data message compete fur the right to

transmit; the "r2ight-to-transmt" is asychronously created by the winninq station, coficLts are

unavoidable but tolerated.

In the case of bus architectures, the archetypes of these two categories are respectiwely the token

passing and CSDI/CP protocols defined by the IEEE 802 4 and 802 3 sub committees

0303

0.002

0.001

0.0001

0.0006,

0.0004

0.0003 p

A PS
0,0002 -

_1 .6 .5 _.4 _3 .2 _1 0
10 10 10 10 '0 10 10 10

figure 1: Mean paireise path un-rellability

7 (N=50, R=0.9999, P 0. 9999)

From a dependability viepoint, competition protocols would seem to be preferable since (ontlicts are

natural foreseen events ahereas 2n consultation protocols, if stations become des'nchvonized then

uneipected conflicts may occur and special mechanisms must be invoked in order for the stations to
resynchronize and resume normal operation. These special, rarely-activated mechanisms lead to te

problems. Firstly, if desynchronisatson should occur, the effective access time may be much greater than

the one expected. Secondly, the irregular invocation of the resynchroniyat"n mechanisms leads to an
error-latency problem which could lead to the presence of multiple, undetected faults from xhich the

system may be unable to recover. This vieupoint regarding the impact of MAC protocols on system

dependability, ahioh e cannot as yet justify either mathematically or experimentally, leads us to prefer

the use of competition protocols.

5. 1 founded OS A rotoco

The main disadvantage of competition protocols in their basic CSMh;CD form is the fact that medium

access delays possess no deterministic upper bound. Although a "stochastic" upper bound may be sufficient

in some mpplicationm (ae paraqraph I.) such en assumption cannot be justified in avionic systems ihere

the time constraints are in the order of milli-seconds. In order to deterministically bound access times,

it is necessary to be able to dynamically compute and implement access priorities betseen competing
stations Igmiadier M4. To esplain ho priorities can be introduced into C.M protocols, suppose that the

instanteneous priority of a message is equal to p-I..P, charm P is the maximum priority and that a 1Lot is
a period of time greater than or'equal to taice the end-to-end propagation time on the bus plus the time

necessary for a station to detect a carrier on a previously free bus or to detect a conflicting siqnal

(the latter are assumed equal). There are three basic techniques for implementing priorities:

- .0. 099-42yrn each mesaage is preceded by a delay whose length P in slots is a linearly
decreasing function of its priority level: D(pl)P-p; messages pith Ion priorities will detect the

carrier due to a higher priority message and continue to defer (this implementation only avoids

conflicts if the bus never goes free for more than P slots),

- xR2G%1?.igggb2: each mesmage is preceded by a preamble those length L in slots is a linearly

Increasing function of its priority level: L(pl p messages with loa priorities will detect conflicts

due to the longer preamble of a higher priority message and cease to transmit,

a

5-7

- ,Corelghq1jr: the transmission channel must effectively carry out a logical "Or" of transmitted
signals and each message is preceded by a header of fted duration I slots consisting of a "start-
bit" and the binary representation of the message's priority (SW first) Flp=p; in a particular
slot, stations sending logical "0" will stop transmitting if they detect a "I" (the actual

representation of a "I" need not be a continuous level but could be a burst of carrier).

In all of these techniques, there is an overhead for each message that is an increasing function of
both the slot-duration (and thus the maximum length of the bus) and the maximum number of priority levels,
P. Of the three, the forcing header implementation gives the lowest header ooerhead (for Pv6) since its
length increases only as the log of P.

However, aith the forcing header Lmplementatlon, there is a further controution to the overall

overhead due to the fact that an extra "trailer" time must be allowed for after a message has been
transmitted. This is due to the fact that when the active message priority p is zero, the interval between

the start bit and the beginning of the data part of the message is effectively perceived by the listening
stations as idle time (bus inoccupled); thus, a station must emit for at least an equal interval after

the end of message transmission before it can say for certain that the bus has become free The overall
overhead could thus be twice that due to the header if no further precautions were taken. In fact, the
overall overhead van be miniized by inserting a fixed number of "I" bits Into the header so as to
decreise the maximum bus-idle time mhen the active message priority is zero.

using the following notation:

cellixl smallest integer greater than x

K : number of bits needed to code the message priority:
b number of extra "1" bits inserted in the header (overhead opimization bits,
TW header duration in slots

TT : trailer time duration in slots

ae staln:

K 1eil (log {(P) I

TT e eil f K/(bli I

and the overall overhead %T~rTT) is minimized for:

b nil K
1 "

'
2

- I I

be have studied two bounded access-time CSA protocols based on the forcing header concept that we

shall denote CSA/F[hO and CSMS/WR.

5. 1 1 The CSMA/FIFO protco1

In this protocol the instantaneous priority of a message is given by:

p v na As

with:

K : the manimue allowed number of stations (power of 2)
em : the number of failed access attempts incurred by the message

As : the source address of the message (As=0...N-1i

The forcing header is thus made up as follows (neglecting the overhead optimization bits):

- na As
J________J

Thus, messages wlth highest yalues of a elll have priority in gaining access to the bus and messages
aith aqual values .if na aiI be seperated according to their source address. Whenever a station fails to

send a message (because another station has a higher instantaneous priority), it waits until the

successful station has finished sending and then tries again immediately. This access protocol thus has

the effect of provLdlng a PF0-like scheduling technique for the bus.

The maximum access time that is achieved occurs for station "I" when tit generates a message just
after all the other stations collide in attempting to access the channel; it must thus wait for a total of

n message transmissionS before it can successfully tranmit (where n is the number of active stations)
Letting TD be the duration (in slots) of the date part of a message And allowing I slot between each
successive message (the worst case), the maximum access time (in slots) Is given by:

Tmax
=
n.(TfnTDTT l) T

With W=128 and b=3 this protocol leads to:

TO = 18 slots

TT - 4 slots
- TAmex = I(TO) 23) 1W1 slots

-O. -

~'-~- . 1

5. 1 .2 Thaw CSHA/ff~ pzo<t~cocfcl

This protocol is based on what me 'sail a "Naitmnq-room" concept: each station may insert at most one
message in a ,tIrt ual IMaiting-room of messages competing for the medium and can inly do so shenl the
'.aItnj-rL1oM IS oMptV. rile status of' a message with respect to the wasting-room is Indicated by a local
bool-tan ItvI aribl e a G outside, I- inside) and the status of the waiting-room is indicated by a global
borolean viable (0 : empty, t nlon-empty). A newly generated message has a zero a-value; the latter may
only be set to one when the waiting room as non-empty. The instantaneous priority of a message from a
stat-a, of address AS IsSet equal to:

p . Ntis

The forcing h.-a"lei (neqlvtinq the ,.-vrheard optimization bits) thus consists of the start-bit, the a-
Li t andi I Ogv M) " ddress bitS,

Kh-n a ,-oslvtatrriflle value recad by each station 'luring the c-bit slot is none other than the
global r. ti,c . It- a Staric is attes .. ting to send a message with w O then it Kill stop sending if the
-1"ie of' Mt i equal to I I indirating that the waiting-room is noc-empty). Messages in the catting-i-ova

a1quire access In us "'iderly and thus bounded fashion by anans of the fixed priority order imposed by
thei r .adi-es. A s. when the Ilast message in the maiting-room has ben sent, H wiil be equal to 0 and all

"utstandling messages (Kwith a 0) will collide and consequently set the a-values to I (indicating that the
waiting room let in a new set of messages),

The saximum acce.ss time that is achieved occurs for station "0" when it generates a message 3ust
after all the other, stations enter the virtual waiting room and then immediately generate nem messages as
-01 as theyV have successfully ti-ansatitted; station "0" must thus wait for a total of 2.(n-1) message
trasii;ions befot, it can successfuilly transmit The maximum access time (in slots) is thus given by:

Titax 2.(ni) (Tt-TptTeTl) , TH

Kith N=)t28 and b-2 this pirotocol teals to:

-TH it slots

-T I slots
-Thcax) 2.(n-).(TO t 1') i 11) slots

5 . 1. 3 Paxg'-C ~manc',4 - L m 1t a

The table In figure 2 summarizes the ojerheads incurred, the corresponding maximum access time and
ic. trace an.) piotocol enffr-its for calf data rates of I and 40 ltbitys. Tile f,-gme efficiency is defined
hy t he ta t I betaeen iso useful data duration and the overall message duration and the protocol efficiency
is defined is tile rati-, betwcen ihe achieved maximum access time- to the one that could be achieved by a
pecrf-vt FIFOd sclciul in; 5-ieee with iero overhead (i. e. In-l Tb) -

I ibitys d0o b~

CSMIhyyFO CSRilRl CSMR/FlFO CSMA/RR

iessaqe overhead I ys) 66 42 66 , 42

Man access time Cms) 20.9 38.0 488 PP 6.5hi

Fr'ame elficiency () 79,5 Rh. 9 8.84 1 3. 2

Iefficiency 1) 7.3 P2. 5 8.26 l.1

Figure 2: Bounded CSM& protocol comparison
(with 256-bit messages, a 300 m. bus, R=I28 and nzP4)

It can be seen that although the CSMA/RR protocol gives a better frame efficiency than that of tile
CSIIP/FTFO protocol, the fact that worst-case CSMAPIRR messages must mait for a higher number of higher
priority messages leade to a protocol efficiency almost halt that gieen by C3MAyFIFO. In both cases, cthen
high rawv d ata rates are employed (meaning that the slot duration is no longer negligible chew compared to ~-
t hecuseful data part of the messaqe), both protocols lead to a prohibitiely low efficiency. Re must than
-onclade that such protocols can only be used Khan the data rate is lowl and/or bus lengths are short. The
only nay to achieve a higher performance on the bus architecture is to increase the degree of
synchronization between the stations, i.e. to use a consaltation protocol. Re thus turn our attention to
token bus protocols.

S. 2. T c: kmon - p s arIn n a p -o 1 cprct o I a

The token bus protocol, in the fault-free situation, is extremely simple: a token is passed around a
virtual ring of stations and only the station possessing the token has the righit to Initiat

transmissions Fro~fm aperformace viewpoint, thin overheadtper information message is fixed by the dural:tion
of theq to ken messae, Assuming a token messg of 6 octt the table of figwre 3 gives then overhemds
incurred the corresponding maximum access time and the frame and protocol efficiencies for ran data rates

-
. ---- mod

l ' N
- Iam)

of I and 40 Mbit/s (note that the frame overhead and efficiency refer only to the time taken to tranSmit

the token message and not the control information in the data message).

I Nbit/s 40 Mblt/S

Message overhead (s) 21.3 1.6

Max access time (ms) 20.4 0 695_2

Frame efficiency (%) s0.0 80.0

Protocol efficiency I 3 79,1 561

Figure 3: Token bus performance

(with 256-bit messages, 300 m. bus, H=128 and n=.4)

It can be seen that at a data rate of 40 Mbit/s, there is a very distinct improvement in performance

over the bounded CSMA protocols studied previously (see figure 21

Another advantage of token passing is that it is Nell -dapted to the notion of multiple message

transactions whereby the station holding the token may carry out a command, reponse sequence ksee paragraph
1.1).

5.2.1 Op ermt onle a ntir nuity With tcacofn buM p ot clW

Honecer simple token-passing protocols may seem in the fault-free situation, considerable complexity

is introduced by .irtue of the mechanisms necessary to initialize and maintain the virtual ring and to

regenerate lost tokens when the token is lost or stations are withdrawn, the communication service

offered to the remaining stations is disrupted while recovery takes place Unfortunately, most token-bus

protocols are optimized for recovering the virtual ring in single-error situations such as loss of the

token or of a single station (a quite reasonable assumption if ring integrity is only menaced by random

physical faults) In a multiple -rror situation, all the protocols that we know of must totally re-

initialize the virtual ring tby techniques akin to priority CSMA protocols) leading to quite lengthy

service disruptions.

The situation is particularly delicate in the case of high-speed transmission in an avionic

environment Firstly, electromagnetic interference can lead to bursts of noise that will entirely

obliterate ahole sequences of messages resulting in the need for complete ring re-initialization.

Secondly, even if long bursts of noise can be prevented, the normal avionic event of load sheddLn,- see

paragraph 1 2, can lead to the simultaneous withdrawal (and later re-insertion) of several stations.

Me shall consider the duration of the resulting service interruption for tao well-known token-bus

protocols ARCNET and IEEE 602.4 me shall restrict our comparison to the case where a stations are

simultaneously aithdrawn from the system, including the one that had the token In order to compare the

principles and not the technological implementations, me shall consider for both a maximum of 256 stations

(8-bit address fields, and use the following notation:

As a station identity number (As=O .255)

T T length of control messages (assumed equal for simplicity)

- slot twice the end-to-end propagation delay

-n number of active stations remaining after the incident leddinq to ring re-initialization

In both protocols, all stations detect the absence of activity on the bus by means of a time-out and

then proceed to re establish the logical ring in tao phases

Phase 1. elect a station to generate a unique token

Phase 2: build the logical ring starting from station elected durinq phase I

Phase 1: Each station starts a timeout equal to 2 T 1255-As, in the worst-case, Is is ec:al to n

Phase 2: The station that is first to time out polls the other stations starting from its As until it

obtains a positive reply before a time-out equal to at least I slot, the replying station then

starts polling from its address This is repeated until the last active station polls the station

that initiated phase 2.

[551 QUA *U9frkQ

Phase I: All stations attempt to claim the token by sending "claim-token" messages; conflicts between

claiming stations are iteratively resolved by using variable-length information fields that are

multiples of the slot duration determined by successive pairs of bits in its As fin a similar

fashion to CBMA protocols with priorities implemented by variable-length preambles).

Phase 2: The station that ing in phase I then sends a "sollicltsuccensor" message that thus initiates a

"resolvecontention" sequence; contentions are resolved iteratively by requiring the other

stations to reply after a number of slots that is again function of successive pairs of bits in

their As. The station that wins then initiates another solliclt-successor/resolve contention

sequence, etc.

Thus, in both protocols the duration of the service interruption (defined as the interal from the

occurrence of incident leading to system re-initimlizatlon to the instant when the logical ring has been

___-
__K

,..ev,- -y---.m---- - -

e _ _ _ _ _ _ _ _--

-- 1 "m m mmmamm m m• m bdm l H m - II.

5-Il

reestablished) can be calculated as a function of the required number of control messages tC, and slots

.3) required to complete phases I and 2 (see table of figure 4 .

IEEE802.4 ARCNET

Phase I Phase 2 Total Phase I Phase 2 Total

n C S C 5 S C S. M 3 A 3

2 4 7. 14 19 18 26 0 254 258 255 258 509
4 4 7 36 50 40 57 0 252 . 260 255 260 507

8 4 7 ' 76 104 82 115 0 248 264 255 264 503
16 4] 162 212 166 219 0 272 255 272 495

32 4 7 328 416 332 423 0 224 288 255 288 479
t4 .64 7 0 776 664 783 r 192 320 255 320 447
126 4 7 1322 1492 1326 1494 0 128 384 255 384 383

56 2646 2730 2b50 2737 0 0 512 255 512 255

Figure 4: Ring initialization in terms of control messages and slots (assuming A-bit addresses

The table in figure 5 gives the eame comparison in terms of time (in muit-seconds) for a 300 m. bus
aith data rates of I and 40 Cbats/s and assuming that all control messages contain 8 octets. Figure 5 also
sho.s the maximum access time that is ensured in the fault-free situation mhen 256-bit data messages are

ass umed.

I Mbit/s 40 Cbit/s

Init. time (ms) Fault-free Init. time (mas) Fault-free
aces access

IEEE802. A RCKET time (as) 1E8002.4 F ARCNET time (as)

2 0.258 4.107 0.387 0.082 1.591 0.0126

4 0.571 4.121 1.03 0 181 F 1.586 0.0346
8 , 1.165 4.149 2.33 ' 0.365 1.5-5 0 0786
16 2.317 4.205 4.91 T 0 698 1.553. 0.167
32 4.589 4.117 3.1 1.352 1.509 0.343I I

6 99 4 20.4 2.515 1.421 0685
128 17.757 4. 989 41.1 4. 828 1. 245 1r40
256 34.711 5.885 82.4 8.873 0-893 2.81

Figure 5: hing initialization times and fault-free access times
(300 e. bus, 8-bit addresses, 8-octet control messages, 256-bit data messages)

This table leads to several comments:

1) ith 8-bit addresses, when more than 32 stations are present in the virtual ring, the ARCNET
initialization scheme is faster than the IEEE 802.4 scheme; note however thmt 16 or 48-bit addrennes
(as specified in the tEll 802 standards but u'_ecessary in avsonic systems) mould severely penalize the
APCNETecapproach.

2, At a ram data rate of I Cbit/s, both initialization techniques lead to a service disruption that is
less than the normal, fault-free maximum access time (for n>16 with the ARCOET approach).

3) At a ra data rate of 40 Mbit/s, the service disruption due to initialization using the IEEE 802,4
technique increases with the number of acti ve stations and is from 4 to 8 times longer than the fault-
free maximum access time. The ARCHET technique gives a service disruption that decreases with the
number of active stations 'the main delay is due to the phase I time-out) bat varies from 126 down to
0.31 times the fault-free maximum access time.

In conclusion, the service disruption that results from the requirement for totalip re-initializing
the virtual ring when several stations are simultmneously disconnected due to the normal avionic event of
load-shedding becomes prohibitively long when the raw data rate is high. In order to decrease the duration
of the service disruption, the mebership status of the virtual ring must not be lost when load-shedding

occurs.

5.2.2 Partia2ly-aentrltued recovery

Memorization of the status of the virtual ring can b achieved in two ways:

the logical ring can be peramnntly stored in non-volatile memory; this approach is very
restrictive from the modularity viewpoint since the addition of new stations would require all
station interfaces to be updated, ii J
- certain priviledged stations can be equipped with back-up power supplies such that they are never
powered doss during load-shaddlng; these stations can then store the status of the logical ring and
tahe rwspnsiblllty for ring recovery.

The latter approach ts quite feasible ince certain highly-critical stations (much as inertial

-- mow-

' da

"K -. ,I l mu•mll ~ m l l l•ml

/I

nuvigational systems, must be ,continuoIusly powered and will och aithdr-aa from the system in the eent 4

failure (a rare, rather than a normal. e.Ont sauh that multiple withdrawals of such stations ,,an arain be

cuns1derd of negligible brobabllt)

Thus, a variation on the basic token-passing scheme can be considered whereby a only a Subset ,of
stations (master stations) take the responIsibility for re initializing the virtal ring; the other ,sla e

stations are pbysically prohibited from attempting ring recovery One of the nas r stations assumes the

role oS an A t yely iqrto (the other master stations assume the role of pote wImnaiontorl,5 that
contlnuousy follows the whereabouts Of the token, If the token is lost or sent to a stattion that has
wLthdraawn, the active monitor sequentially polls the uccessors of the last station sen to have had the

token (not all possible stations, only those that were inserted in the virtual ringq). It can thus be

ensared that the communication service Is rapidl, I.stored to tile remaining stations in act, the

duration of the service disruption following a load-sheddIng operation Is almost nug Igible and is
proportional to the number of missing stations not the number c

0
f active stations) for each mt sing

station, there are the following contrbutions to the Incurred servie disruption:
- a one slot time-out for the active monitor to realize that reco ery must be Initiated,.

- a poll message to the station that Should have transmitted (in -ase it did not reply bet-roSy the

token message was garbled),

- another one slot t.me out to detect that the station is indeed mis9ing

The duration of the service disruption can thus be considered equal to two slots per" missing 1 tatni h
since the poll message is of the same duration as the token message that Rould have been sent had th.
station not been disonnected.

As shown in paragraph 4, this apparent centraltzation of the recovery function Is In no .a

detrimental to the overall system dependability (assuming that there are at least two Or thiie master
stations) and, depending on the relative fault coverages of the master and the slave Stations, may be een

better than a totalty-decentralited approach.

Of course, if the station that is the current active monitor flils then a new active monitor must he
elected in much the same way as in a conventional token-bus initialization or Ccovery protocol

In the preceding sections of this paper, we have outlined the major options that are available for

real-tame La"s In an avionic environment. In the nest two sections, we hall give short descriptions of
two research projects of avionic LANs in which we have been involved.

6. RKRA: A UXERARCHXCAL LAN FOR

A0QREsSIVE ENVIRONHENTS

The avionic LA summarized in this section was designed in collaboration with the Crouzet company.

RHEA man the subject of a prospective research project and as such its specifications were very general.
The emphasis in its design was placed on fault and damage-tolerance and from a performance viewpoint, the
objective was to be comparable with eisting avionic data transmission systems, ie. from 100 kbit/s to

I M b it's.

S6.1 Kmtwo -- 1Q', l er-'hiteotuak

:In a bus architecture, the only element common to all inter-station paths is the bus itself.

Consequently, wm would etpect such an architecture to be very dependable if the multipoint channel is

correctly designed. This qualitative reasoning was confirmed by a quantitatice comparison of various

transfer architectures based on a simulation approach (Powell 82?. In the case of an aggrrssive

environment where physical damage must be taken into account, this same study revealed that meshed

architectures such an a braided loop or an irregular network were more apt to tolerate multiple localized

faults Ilesional faults? due to damage. The philosophy adopted in AREA mas to try to obtain the simplicity
advantages of the bus architecture whilst relegating the responsability for lesional fault tolerance to
the physical level, However, a requirement for interconnecting geographically localized stations into

clusters led us to choose a derivative of this architecture possessing two levels of multipoint channels
(figure 6):

- a distributed bus interconnecting geographically distributed stations and clusters of stations,

- local busses interconnecting stations within a cluster.

6. 2 Nedirm aoo.m. ocnt ol

The requirements imposed on the medium access control protocol were:
- to be compatible with a broadcast transmission service,

- to be cpable of tolerating the failure of any number of stations,

- to ensure deterministically bounded access times.

Since there ems no very strict requirement on performance, the qualitative reasoning set forth in
paragraph 5 concerning the relative dependability advantages of competition and consultation protocols led

ur to choose the competiton approach using CSNA techniques. The requirement for a broadcast transmission

service rules out CSKA protocols that detect conflicts by tlming out on an explicit acknowledgement

essago and we consequently restricted the choice to collision detection (i.e. listen-while-talk?.

5-12

Distributed bus

SS: Stat on ,

H Bus I ndom

Figure 6: The RH1EA network architecture

The protocol that was chosen is the CSMAIPIFO protocol usin
9

forcing headers as described In

paragraph 5.1.1. Dimensioned for a maimum of 256 stations (6-bit addresses), the forcing header is made

up as shon in figure 7:

I 4 1 4 I 4 1 4

start-bit number overhead source

of failed optimization address
access bits

attempts

Figure 7: RHEA forcing header

The flow chart ,f the algorithm carried out by the MAC-machine in each station interface is shown in
figure 8. ote that since conflicts are resolved during header transmission, the o 1erall throughput can be

increased by isino a dual-speed transmission scheme with the information frame sent at high speed A

simulation study ,f the Imerforance of 12 different channel access algorithms IPowell Ala) has shone that

the V4O acces lela" of this technique is of the same order as that obtained mith an Ethe-net like
CSMACD p'otocol or a token-passing consultation technique.

6.3 Tr-nimm om cn ohar, n Me tCpolcgI: a

The structures of the transmission channels must be chosen in function of their capability to tol-

erate ultiple localized faults due to physical damage (lesonal faults) Their implementations must be
either intrinsically secure or use self-chechung techniques. MIno, in order to facilitate the

implempntation of broadcast services, the transmission channels must be capable of one-to-all
transmission

In accordance with the specification of tolerance of lesional faults (multiple localized faults), the

distributed bus is implemented by a network strurture.

The local busses, being intended mainly for interconnection of clusters of geographically localiled

stations, are designed only for tolerance of independent faults ahd not lesional faults. In this case, the

transmission channels are implemented by star structures.

Figure 9 gives an example of a H.., topology.

6. 3. 1 The d L tvibuted buM

Three " *ferent techniques for netmork-structured multipoint transmission channels have been

investigated PomelI Mhi, a passive, fiber optic network, a signal-switching network and a pulse

smutchingj network

Each technique is applicable to a particular range of the product: "throughput i netmork diameter'.

For transmission over a distance of 1001m at a rate of lOkbit/s to lfbit/s, the most suitable technique

is pulse-switching.

4.i

_ eI imI| _-

START

0a~

Bus free I -
YES

Se iuen7 foar ont fvetrhadr)

H e a d e r -br ti 2)
Suocasfl bus

Figr gurTe,9: Exaple RIKAne topolog rt

-S - ike pulse-seitchxng (ee rfrete n f7ur nen o0 possesses " bdretol seia likVht n

a _

-S- _ _ _

SV

S-14 1I
D,-l

4 t.. I (1 L/v. tN..)

where tsl,: is the maximum propagation delay of a node, v is the signal propagatlon velocity and L is the
maximum link length (this expression comes from the maximum phase difference that mast be tolerated, .e

twIce the inter-link propagation delay). The collision detection Pith forcing mechanism can be applied to

such a transmission channel if the maximum transmission rate during the conflict detection phase is

limited to D, given by:

D,

d..is tn. c (dh a1. L/Vv

where d:,. is the maximum diameter of the network. Thus, the channel access technique described above can

be applIed by respecting the constraints: header transmission rate (Dc and data transmission rate

Bidirectional links to other nodes or to a station

(a) Functional node diagram

input_2-L__-_-_ ignals

i i -1 or-qate

i~L - U--L- - - - - - otu

output
... . . signals

(b) Signal waveforms

Figure 10: Principle of pulse switching node

The path multiplicity of a network structure enables the distributed channel to tolerate lesulonal

faults due to physical damage. However, it is also necessary for the channel t tolerate faults due to

component failures. The tolerance of such faults in R, EA relies upon the network structure of the channel

in order to implement a distributed self-checking technique with each node controlling its neighboring

nodes and disabling them if errors are detected.

Figure 11 gives the block diagram of a node. The functional part of each node and the links between

them are duplicated. The pair of signals from each link are compared by a "control block" ,fiqure 12

based on a comparator and a sequential machine. Rhen the teo signals disagree, the control block inhibits

the input and the output on this link, Thus, the control block not only controls the two functional nodes

at the other end of the link but also both lines of this link. Faults are tolerated by the redundant

nature of the paths in the network. In order to ensure that the maximum phase difference between the input

signals from different links remains bounded by tmice the inter-node propagation delay, it is also

necessary to include a pair of "dead line" monitors that inhibit a link if it remains inactive when the

other links are active.

The most critical part of an r self-checking system is the checker itself, One must be sure that whew

a fault occurs, thi cheker wll detect it, i. in. there should be no latent faults in the checker This

fault-latency problem is solved here by the design of a control block that, if it fails, Ill either

immedIatel, lead to as error detected by the neighboring nodes or Pill result in the unaltered propagation

of the input signals.

---- I I-_

5-15

L L L L

i-h

Control 4 S S S I S Sa S1

b:lonkcoule

b, OCR.

SF -F F

T T 0T

D

L '
4 4

Functional unctional

node L: bidirectional node

serial link
4 4 C: linkcoupler 4 4

4 Dead-line S: ouput control Dead-line

on.tor e nmonitor

Figure II: Block diagram of a node

Ck Ck

D QD

1ink
In put C
signal. towards

Ck Ck functional

node
DQ D.

C output

:.:d

ein~ble

ErrOr-proceaasng c.. in na
s1equential mahine..omad

- (clock

: error sigal
T: transfer control signal
7: permanentt error signalg

figure t2: Link control block

5-16

Thus, the netaork nature of the system creates successive barriers to error propagation- if the
control block on a link coming from a failed code has also failed then the node containing that control
block kill also be eliminated from the network by its neighbors This successive barrier fault inhibition
technique is illustrated in figure 13

-- 7
Ti fel is

Lmbhiltad harm

S centra black
dul unetioanal nod

Figure 13: Illustration of the BREA fault inhibition technique

6. 3. 2 The local busses

There are tao possible implementations of a star-structured muitipot transmisslon channel used for
the local busses: a fiber-optic, n-Kay coupler (see, for example: Iharcoski 761 or a loosely-coupled, alr-
cored, n-Kay pulse transformer.

RREA uses the latter technique since it is not only possible to realize a central star-node that does
not present any hard-core but also being AC-coupled, such a node prevents propagation of transmitter
stuck-at faults. Theoretical and practical analyses at LAAS have shown that a transformer coupling coeff-
icient in the order of 0.01 leads to a transfer function between two indIngs that is practically
independent of the state of the other windings (open or short-circuIted) and aiso furnishes an output
signal of sufficient amplitude.

7. ANTINEA: A HIGH SPEED DATA BUS

The avionic LAN summarized in this section was designed In collaboration with Electronique Serqe
Dassault. The emphasis in this design is on high speed and the resulting system Kas proposed as a

contribution to the work currently being carried out by the High-speed Data Bus sub committee (& E-OE) of
the Society of Automotive Engineers.

In terms of actual critical values, the objectives that we set out to achieve are:

A Number of stations: a 12A
Transmission distance: v 100 M.

a Number of priority levels: 5 (0-3: aperiodic, 4: periodic)
A Upper bound (deterainistic) on the transfer time for priority 3 messages (64 active stations

sending 256 bit messages): - 1.2 ms
A Minimum time between periodic messages (16 stations sending periodic messages) t 0 5 ms
0 Maximum time for a command/response'cosfirm sequence: ms.

Ks a direct consequence of these objectives, the gsegl data throughput (excluding protocol and frame
overheadsl must be in excess of 13 Mbit/s. As a guideline, we are aiming at a system with 20 Nbrt/s useful
throughput using a raw data rate of about 40 Mbrt/s It would seem reasonable to offer a specific
command/response mode of access to the transmission resources (if the command, reponse and ,ommit messages
were considered as arbitrary messages, then me would need to achieve a maximum message transfer time less
than 0.11 s lewding to a required useful throughput of nearly 50 Kbit/s).

7. 1. Topology

ANTINEA uses a bus architecture in which the physical layer is made up of one or several sub-busses

connected to a central repeater. Each sub-bus has unidirectional transmit and receive sections each split
into one or several branches; each one may be made up of either co-axial cable or optial fiber. Khen co-
axial cable Am used, stations are tapped onto m sub-bus branch using directional couplers. In the case of
optical fiber, a tree-configured sub-bus using optical splitters was preferred. A complete system may use
a mixture of both technologies (figure 14). The central repeater function is of course a hard-core but its

mm ,

functionality IS So Simple that IS Can easily be made loce lly redundant.o Furthermore, thedivision into
sub-busSe S (necsarY for attenuation reoasons, gives an aded advantage in that errors. due to fAIlure of a
sub biscn be confirned w It hout bringing down the wholesytm

Py ic I t iN l ius.

7. 2. Medim accss cntro

procedure) but for which the~ di si t ioal in mai ptend r ucin r eta cdat"r e u y a

masA ntenamne

rthe tntal onos possess n specific monitor ientityumber flnt'? Y tih n a p-t eni motor1.
isat poee upo r he n ' t deetuta h ac.)s 't i e nt o h as dgIsappae, it fis dfran. attemp to1I

tasi fo (t lt s. it o othe station a , stre t ranttn dn g this I dnc intrv a

after this) bursa t crre r, then thsta in assme th rol of ae mIn trd starts tt I mi in
ordie toinitorIali te zirm aw S ti .f nt, hi ai1 monit0ro r elecion redrett 5 ha the m intret e prpet
tatr~ if l tentia monito Ars nitializ p e th pre o cedurYIh e at th amed tim r _ast n t t ten he ie to
elc tu an pe actI moito s only t o n l oitr.l If Conthel iftor hand,' he s tar in sta nts are a' a e I itu iner to o

u e powe - dLa n i m i e t of th i r is n s ant tn th aos v

fute polt ,n ti mo nitors s ba eclce mwithide ntslo ts ot' the i nti l t st ant-
is enw ed fin aperiod i m o te a ts n l eas i on it i di an add e ae I t fir I ue t atue I

t hemi pr(Idic S msage prI rt,- las was. inct. eil n o rdrn ii allo a rAc t .ld subsehdoft- if .'tIv

sttinsento acess t meiu at rP wlm -de fined "D inev tsttt the n ter stations etcted t

s btehos mesae c lass ith s i t by mans he a scond Air tl rI cie d

nrmal t It, ,iohirtual rin isn reerd Toi s aeuetl rAingo euf ion 14) CEve tastin se se an int e I ralI
tie sea t gua l o t he eritod i at v hi h on romast h t passed t heinerr Iut 1 ri a Iftheth timeo te
eleby the firtl .s t to s on th i nterrup t r on theo tn wih oth lwstI lt. in nt errup t oke is- tltmeI r

s h n th normal. sequi -rn t t ou t when tih n
finishedsendingi t es , I oadstsan " t r mt I In t i t
tnsf er o thi up nterrup)the i ng , un ilex it ch sy of late stationre I s ne es b Adasts ha "ret rcfo

7. -. - -P -a-v_ _y m eo h _n ol

T hoe ri b u ori t A wh. i c hI Ih v, r t l f r i n am ae I n" t e n n c Au c i n Nr T INnK A r-d r I ".e d f aMt h o , 1 0 ; f I n d f ,' I F~ t It I F n I h

ECA kdy usatdIs A ea rs -e prIt j c oSesy, th fe0tra-iied oi . . e to

Thcue sp e a mdessage o to t - n -a sn cnurol ior d p ' e o nrmtl . e

da ntenanr-I ase:.
s tat n tot aent18 ont ors ' o * a I ped t n Ionit Pr tde t t nur I ,, .n I" " , po' nI I ,n' 1d ,1

t i s p o .3 e u p , 9 . c h ~ l a d eSt e c t s t h a t S 1 e a t h a t l ' a ni t o r' A # isa p a r et) , m t . a l - t hf e a n ' t t e. t t otan~hslt fo (fif-) 1,o, I" l (t:rs t in has tre ~ nm d rl thl 5 deft- I nt e nter-cal
i t ~ ~ ~ : t oe te d b :u' t o a r e p .~ h r) o a t o D s o s f n o o t h e t n s i on r , c I . e l e It I

nor ma l ,o I ntm a r n i e erre d t a : n , the 5 s uA t l 'Irknl ?t r err"on r d , St t t he P nt reS n In r a- ~ t l
t m Sth t e 0 a t o t n t h] p enr t o d a t a l e th e n r o ,edu e p a t t h e a m e r r e { t ,le If t h~ n e t l m eo t os lt a n taetlv c lur r I ho ls n ~t I . o the no m l , q p tial rn hand. time s ota t ite n z wh e th at sta tio has
ui n e u a p o e r u p ,t e l a yC u r t e n t i l8 o n t a, , asSe c ni t n t ' " ' p t " o .b r I " I .ea - "n a qn t ;ew o s a e

by the f rs o n o t y m"~aqe p h -n i m I.q"th I tI n "h-

tra sf re d p i o it eeh n in rp r ut il into Ar Ie ar he l s d io ho th e d fn o r a t h" a n~ "u t h e o

..... t-o uss Attlfffelrtt lse ubee ro oi t ~f'e l~ - o}

interrupt" message (RIM) that signals to the station that originally triggered the interrupt sequence to
resume operation n the sequential ring. The 'interrupt mode" message is also use' to reset the internal

timers of all stations on the bus (a reliable broadcast need not be assumed).

0 0
MID F newf .h- -

- active
monitor

2 x- - J--L

new
Octive

3 X------ monitor
I I I i Ii I I I I I i

slot

x locaLLy perceived start instant

Figure 15: Active monitor election procedure.

sequential ring interrupt ring

Figure 16: Sequential and interrupt virtual rings.

The aperiodic message priority classes are implemented by a set of "token rotation timers" in each
station, denoted TRTi for priority class i, i=0..2 mith TRTO I TRTI I TRT2.*'henever a station transmits a
(sequential) token it resets all its timers. When a station receives the token, it first sends all back-

logged messages of the highest aperiodic priority class (class 3). If timer TRT2 has not timed out, the

station may then start sending messages of class 2 and so on down to class 0. The maximum time for mhich a
station ma; send any messages (of all classes) is limited by a further "token holding timer" denoted TNT.
The interesting property of this implementation of priorities is that if there are no current messages of

say, classes 2 and 3, then the total bandeidth of the bus is automatically available to the lomer priority

classes.

CONCLUSION

It can always be argued that in a particular application, a specially-tailored system mill give a
better performance than a standard one. Rwecver, standard systems should give a reasonable performamnce

oer a range of opplscations (and cost less). It is only mhen standard solutions have bean pushed beyond
their limits that specialized systems or nea standards should be envisaged. In thia paper, me have tried
to outline the essential differences between standard "general-purpose" LANs and thosm required for harsh
real-time applications, and in particular, avionics. The to different and independent projects that have
been described acre focussed on different aspects of future avionic LAN requirementa.

In WHEA, the accent was placed on fault-tolerance and me did not try to achieve very high date
transmission speeds. A prototype of the distributed channel mith a totai of eight pulse-smitchlmg modes
"as realized and has demonstrated the validity of the distributed fault-tolerance technique. The prototype
used Schottky TTL 3 1 componeets leading to a node propagation time equal to 250 n. This. ia comj nction

aith a maximum projected network diameter of 10 nodes and iO-meter links leads to an overall throuaput
(header + information frame) equal to 350 kblt/s. The throughput limitatiom is due to the choice of &
pulse-saitching meshed bus hich man in turn due to the need for ensuring broadcast tresmissio, If only .

point-to-point transmission is required then a signal-snitching meshed bus could greatly improve the

resulting maximum Lhroughput (Pomell ib).

:&In A XINE, the aim as to provide a very high-speed system sad the approach to fault gad damage-
tolerance was restricted to the implementation or independent sub-buaeml sith poeible passive biabsehe

into d.,mage prone areas "AHTINEA" represents our contribut In to the current SiE High-. peed Dats Bus

slandairdz ton a, tivit, The n,. standard may not contain all of the features that we have mentioned but

it will neeriheles e quite different to prcvious standard "terrestial LAMs.

ACKNOWLEDGEMENTS

This work was partIall; financed by the "Direction des hecherches, Etudes et Techniques" (DRET,. RHEA

w.S the object uf DPeT contract no. 78. 352 and gas carried out in collaboration uith the CROUZET company

The work on ANTIWEA was carried out in collaboration with Electronique Serge Dassault (ESD) under DRET

contract no. 82 (4 452

opeciadl thanks go to Messrs. F.Ploubinec, 0.d'Hervilly and J.4. Mayou of ESD who contributed very

largely t the ideas that we have set forth.

RREFERENCIES

Asbe"S 8S5) A Ambrus, K. erner: "SILK system for integrated local communication", Pkoc Third EurqDean

Cthe(, Q tcc : Qqgigcygfons and Local dj:es tyrcs hgQpgxlop, Montreu, Saitzerlan, I9-21 June,

1985, pp. 107-112

(iernoski 761 8. K. hAtMOSKl EhI !w~) of gPDIc4a f~bpr ISBN91(90h" 05W-12-Dg91SD-1. Academic
Press inc.. 1976.

(Been 651 B.K. 3. Bewn: -Convergence' towards a metropolitan area network", Eryg. Tbirq Eugrp{n# FxLet

QPtg C9 lskCotlonl a "g c8ql fir0a t"g"WCh ShpghlQI. Montreui, Switzerland, 19-21 Jane, 1985,
pp. 113-117,

Ed'ervllly 84) G. dtervully, J.J. Mayoux, .Plouhinec, D. Powell, JC Valadier: "ANTIMEA: an integrated

digItal transmission highway for aggressive environments - overall specification and general design

stud/", teAS research reporI no. 3175. Final report of DRET contrat no. 82.34.452, 30 November, 1984

in French)

(Penney 761 6 Penne, A. A. haahad: "Survey orf computer loop networks", parts I and 2, CqooPgtr

Communcathos. ol 2, nos. 4 and 5, kugust and October, 1978

(Powell le) P F PORELL "Performance evaluation and comparison of dependable channel access techniques

ior locally.distributed computing systems", procee lng gf th jn IoPrtiPna Confre(nce ye

riu Q fgmputing jygtr, Parts, France, 8-10 April. 1981.

(Powell Sib) D h.POWELL "Dependable local area networks for control and monitoring", State b9ctorgte

thr!i, no. 56- Institut Mational Polytechnique de Toulouse, Toulouse, France, 23 October. 1941 (in

French) .

(Powell 82) D.R POMELL: "Dependability evaluation of commanication support systems for local area

distributed computing", Pt'9gg&41gg1 9f tbg 1?tb. 101ec08Lb004 SYmipQohe 91? faQt:mkpp1?ptpflg
(FTCS-12), Santa Monica, California, 8SA, 22-24 June, 1982.

(Stiffler 781 J.J.Stifrrer: "Fault coverage and the point of diminishing returns", eQhr rJ Li Pei4p

&91008tk0 @4' Ft441,CgkjeIiit gQQ04tA0 vol.2, no.4, October 1978, PD- 289-301.

(Valadler 841 J.C. Valadier, 0.R. Powell: "On CSMA protocols allowing bounded access times", Proc, 41ph, In,

Copf. on DItri utgd ?omDMLkOg Sy tgtj, San Francisco, CA, US, 14-18 May 1984, pp. 146-153.

[olf 79) JRolf. M Liu, No Bide, D. Tsay: "Design of a distributed fault-tolerant loop network", Proc.

?t i.- AnD. Lot- Sjmp.- q u r nt £ iting (FTCS-Q, Madison, Hn., UZA, 20-2. June 19'9

(Zafiropula 741 P.Zafiropulo- "Performance evaluation of rellability" weprovemvnt techniques for single-

loop communication systems", IEE It . 9g Qi goq ngto, vol. COW-22, no.6, June 19'4

/

-/

S1

I

Multi-Computer Fault Tolerant Systems Using Ada

Walter L. Heimerdinger
Honeywell, Inc., systems and Research Center

Minneapolis, Minnesota 55440

1. SUMMARY

Ada will be the language of choice for a number flight critical applications in the
future. Ada incorporates a number of constructs to aid in constructing reliable software,
including packages and private data types to manage the visibility of data and strong
typing to control the values and operations that can be applied to a data object. Ada
also provides constructs to assist in the construction of fault tolerant software. These
include tasks and the Ada mechanisms for synchronizing and communicating between tasks,
for exception handling and for timing. These mechanisms rely to a large degree on an Ada
run time kernel, a set of routines to provide Ada features that can only be implemented
while the application program is running. Since the run time kernel is essential for many
important Ada functions, it is critical to the reliability and fault tolerance of the
application it supports.

Since multiple computer architectures are often used for fault tolerant systems, the
implementation of Ada software for multiple computers is an important consideration. Two
ongoing projects at Honeywell illustrate the range of options for distributing Ada
software on multiple computers. The first approach, which creates a separate Ada program
for each computer, makes the least demands on the Ada compiler and run time software. The
second approach, which treats all software for a multiple computer system as a single Ada
program, requires a specialized Ada compiler and special distributed run time support
routines, but separates software partitioning from the application programming.

II. INTRODUCTION

Most flight-critical systems meet the criteria used by the U.S. Department of Defense for
an "embedded" computer system; the computer system is an integral part of a larger system,
and the system must operate in real time. Also, flight-critical systems usually are
multiple computer systems, to provide protective redundancy. The Ada programing language
is a logical candidate for the implementation of software for these systems, as Ada was
designed primarily for embedded computer system applications, and Ada incorporates a
number of features to enhance program clarity and to improve error containment. Also, Ada
has been mandated as the programming language to be used for future U.S. Department of
Defense embedded computer applications.

The Ada language is a result of a concern by the U.S. Department of Defense over the
continuing rise in the cost of software (DoD was spending over 3 billion annually for
software at that time). Part of the problem was perceived to be the lack of
standardization in the programming languages used for what are now called embedded
computer applications. In 1975, DoD sponsored the development of a series of language
requirement documents, beginning with STRAWM4AN and WOODENMAN in 1975, TINMAN in 1976, and
IRONMAN in 1977. An initial slection phase in 1977-1978 evaluated four language designs
to meet IRONMAN requirements, selected two of the languages for further development, and
resulted in a new requirements document, STEELMAN [1).

STEELM4AN specified that the language be strongly typed, with enumeration types, user
definable data types, and constraints to limit the range, precision, scale, etc. of a
variable. Implicit type conversions were prohibited. STEELMAN further required the
ability to encapsulate definitions of anything (including the data elements and operations
comprising a type), to make it possible to prevent external reference to any' declaration
within the encapsulation. Also, STEEL.MAN4 required a capability to define parallel
processes that could be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. In addition to these requirements, STEE;LMAN
required that it be possible to assemble operational systems from separately translated
units and that generic types be provided for functions, procedures, types, and
encapsulations.

While almost all of the requirements requested had been implemented in some programming
language, most of the implementations were in research or prototype languages; no existing
production language had ever attempted to simultaneously meet all STEELMAN requirements.

One of the two 1978 language designs was selected to satisfy these requirements. The
language was named Ada after Augusta Ada Byron, Countess Lovelace, often recognized as the
first programmer. The first Ada language reference manual was published in 1981. After
extensive review, including a canvass by the American National Standards Institute, the
manual was reissued in January, 1983 [2]. This version of the language, sometimes known

V as 'Ada 831, is the version accepted today.

-=Owl_________

'-2

II. USING ADA FOR FAULT TOLERANT SOFTWARL

Software used in ctitical applications must be reliable--that is, it rust consistently
perform in accordance with system requirements. Reliable software is best achieved by
careful attention to each of the phases of the software development process, including:
requirementE analysis, design, implementation, verification, and maintenance or
enhancement.

The programming language begins to have a major influence in the design phase of software
development. Here, the reliability of software for criticial systems can be increased by
adhering to a number of quality design principles. The most important is to factor system
functionality into modules that can be easi]y understood and maintained. Each module
should meet the following quality criteria [3).

Minimum Coupling--each module should interact with other modules only to the extent
needed to create the overall desired function

Maximum Cohesion--each module should perform its designated function without
undesired side effects (preferably with no side effects)

Maximum Information Hiding--each module should hide the details of its local data
structures and of its local decision logic from its clients. This tends to
minimize coupling by limiting the amount of unneeded information propagation. It
also promotes cohesion by encouraging the use of local logic and decision
structures that are used only for the functions performed by the module.

These objectives can be obtained in almost any programming language; however Ada makes the
job easier. Two aspects of the Ada language are especially important for reliable
software design, encapsulation and strong typing.

Encapsulation in Ada is supported by the Ada package (which groups related declarations
and statements into a single programming unit), and private data types. An Ada package
may be a collection of data objects; more often, it is one or more subprograms that can be
called from outside the package. Ada packages always begin with a package specification
which lists all of the information visible outside of the package. The package
specification may be followed by a package body that contains additional declarations that
are local to a package as well as statements that implement the functions of the package.
The package body provides a place to hide the details of local data structures and local
decision logic mentioned above, while the package specification provides the client the
interface information needed to use the package. Coupling is limited to items in the
package specification.

Consider the following simple example:

package SAMPLE is -- specification
type ITEM is new INTEGER; --part of the package
procedure ACTION (NEW ITEM'ITEM)

end SAMPLE;

package body SAMPLE is --the package body
subtype INDEX is ITEM range 1.100 --internal variables
INTERNAL:array(INDEX) of INTEGER --not visible outside
COUNT:INDEX; --of the package
procedure ACTION (NEWITEM:ITEM) is
begin

COUNT:=COUNT + 1; --the implementation
INTERNAL (COUNT):-NEWITEM; --of the package logic

end ACTION;

begin -- initialization of
COUNT:=1 -- the package's internal

end SAMPLE; --variable

Private data types restrict the operations on a type defined in a package specification to
a few basic operations or to operations specifically defined in the package specification
(the set of operations can be further restricted by declaring the type to be limited
private). This hides the details of the construction of the type from the package user,
thus limiting the coupling between a package and its users.

Strong typing complements the encapsulation features of packages by limiting the values
and operations that can be applied to a data object 14). Every data object in an Ada
program must be assigned a type. By allowing only specifically identified values for
discrete data types, the compiler can assist in assuring that only Intended values are
used. Furthermore, the programmer Is encouraged to use names that more fully describe the
use of the data item; certainly IF COLOR - BLUE is more understandable to a software
maintainer than IF COLOR-CODE - 3.

Basic error containment can be provided with the use of subtypes, in which the values
allowed for variables are constrained to the smallest range possible. Further protection
is provided by limiting the operations allowed on a given type to a specified set of
operations.

.-- ,- _'.. _ ,,n, im~ m ..-.ul..

-h-

Error detection facilities must be supplemented with provisions for error containment.
Virtually all programming languages allow a programmer to include statements to handle
various error conditiors in a module. However, in most languages, the user must provide
the logic to invoke these statements when an exception is detected.

ADA SUPPORT FOR FAULT TOLERANT SOFTWARE

Fault tolerant software is a special class of reliable software that obtains a high level
of system reliability by managing redundant resource so that the system can continue to
operate in spite of the failure of one of its units. Fault tolerant systems are designed
in recognition of the fact that even correctly designed systems with valid initial data
can become contaminated by errors, possible due to transients.

Fault tolerant software, especially flight critical software must meet several criteria
not imposed on conventional software; specifically, fault tolerant software must be:

Real time--the software must complete the processing of critical tasks with
adequate timing margins to maintain the stability of control loops and to provide
alarm/target information within required time limits.

Self-checking--comprehensive checking of allowed values and operations must
be provided, along with efficient mechanisms to invoke error handling routines
upon the detection of an error. Most real-time fault tolerant applications also
will require the ability to time critical activities; in critical applications,
independent timing sources are required. Typical designs for extremely critical
applications use multiple processor configurations in which processors test one
another or compare results for error detection. These systems require software
capable of synchronizing and communicating between software on multiple
processors.

Self-healing--the software must use redundant hardware and software
resources to increase overall system reliability to required levels. Fault
tolerant systems include software to detect, contain, and recover from faults or
errors. This requires software to communicate between multiple processors, to
synchronize tasks on multiple processors and to restart or to initialize new
processes on individual processors while the remaining processors in a multiple
processor set continue to provide service.

Most of the operations above take place while the application software is running. This
leads us to consider an often neglected facet of Ada, the Ada run time environment. Every
Ada target computer supplements the software generated by the Ada compiler with an Ada run
time kernel, a predefined set of routines that implement Ada features that only can be
implemented while the application program is running [5]. These include the
initialization and synchronization of Ada tasks, Ada timing services, exception handling,
and resource allocation for dynamically created Ada program units or objects. To the
extent these facilities are used in existing fault tolerant systems, they are provided by
a separate real-time executive, usually written in assembly language, that is invoked by
the application software through special procedure calls. Figure 1 contrasts the
relationship between an Ada application program, the Ada run time kernel, the executive
(if one is used), and the target computer with the corresponding relationship for a more
conventional high order language. When no executive other than the Ada run time kernel is
used, the kernel must provide the underlying services for fault tolerant operation.

APPLICATION APPLICATION

ADAA
RUN TIME IEXECUTIVE I REAL TIME

KERNEL (IF USED) EXECUTIVE

TARGET COMPUTER f TARGET COMPUTER

Ada Execution Environment Execution Environment
for Conventional HOL

Figure 1. Ada vs Conventional Run Time Support

Fault tolerant systems rely on time for several purposes, including the initiation of
processing loops at a repetition rate sufficient to maintain control stability margins,
the timing of 1/0 interactions with sensors and actuators, and the detection of failed
units through time outs. Many systems use what is often referred to as a rate structured
(or cyclic) executive, which periodically initiates frames of processing activity 16). To
implement cyclic activity in Ada, one would use the Ada delay statement, which suspends
the task or subprogram for at least the specified interval. Ada does not guarantee that
processing will be resumed at the end of the specified interval, however--the only
guarantee is that processing will not be resumed before the end of the interval. If, for

6-4

example, a task is suspended by a delay statement and another task of equal or higher
priority is enabled, control may be returned to the delayed task long after the expiration
of the specified delay interval. Aa a minimum, the program designer must carefully
consider the state and relative priority of all tasks in using Ada timing facilities.

Since time is critical in most fault tolerant applications, it is not unusual for the
hardware to provide a fault tolerant clock, based on several independent timing aoLrces.
The Ada language provides only one delay statement, however, so the multiple clocks must
be managed by the Ada run time kernel. No existing Ada kernel provides such a service.

Ada run time kernels can be expected to check the values of subtypes to detect illegal
values during program execution. Errors result in an exception, which,in Ada, interrupts
normal program flow. The Ada exception handling mechanism provides a mechanism for fault
containment. Exception handling subprograms can be placed in packages where error
conditions are likely to arise, or, the exception may be propagated to a more global
package that provides coverage for a greater portion of the system. For readability and
maintainability, error handling software is best packaged with the module in which the
error is likely to be first detected, but the mechanism for invoking the error handler
should not cause undue overhead that would jeapordize the ability of the system to meet
processing time limits. The efficacy of exception handlers in Ada will depend strongly
upon the efficiency of the exception propagation facilities of the Ada run-time support
software.

The sofVt.ware may provide error-free service by masking the outputs of faulty processors.
Many flight critical systems use replicated processors with voting to provide nearly
instantaneous fault masking. Voting, a critial operation in most fault tolerant systems,
can be implemented in hardware, as in the FTM9P [7] design, or in software, as in the SIFT
[8] design.

Hardware voting mechanisms automatically mask out results produced by faulty processors;
the software is involved only if recovery or restart operations are performed to restore
the faulty unit to service [9]. Hardware voting mechanisms usually require and thus
provide a fault tolerant timing mechanism that keeps all processors in lock-step
synchronism. Special precautions will be required to initialize the Ada time variable on
each of the computers in such a multiple computer system to obtain consistent results.

Software voting is usually accomplished by a 'halt-release" mechanism, in which each
software subsystem pauses at predetermined points to await results from other subsystems.
The software then proceeds if the locally generated result compares favorably with the
results received from other redundant units.

The Ada redezvous can be used to synchronize tasks for this purpose. Separate tasks can
be provided to read comparison data from each outside source. Theme can rendezvous with
the local task to compare data. A delay statement used as one of the task entries in the
rendezvous can be Used to raise a time out exception if one of the cooperating tasks fails
to communicate within the required time frame.

The above examples illustrate a point that cannot be over-emphasized; because of the
number of language features that require support during program execution, such as task
management, exception handling, and type checking, Ada software is much more dependent
upon the software facilities that complement the compiler to provide s upport during
execution, than is software written in an older, conventional programming language. When
Ada is used, the application software must be verified. Note that "validation" by the
U.S. Department of Defense Ada Joint Program Office, which is required for all compilers
that use the Ada trademark, will probably not be sufficient to guarantee adequate
reliability for fault tolerant applications.

At Honeywell, we have been using an interim Ada compiler to develop real time software for
experimental applications. In these Ada projects, which are discussed in greater detail
later, the Ada run-time software has bean the least reliable component of the system.
While the more exotic Ada features such as tasking have caused some problems, the most

0 difficult problems to circumvent have been memory management problems, especially stack
management problems. For example, if a virtual memory mechanism is not available, the
stack space for an individual Ada task is usually obtained from the heap, which is a
collection of data areas available at run time for general use. Often, the ultimate size
of a task stack cannot be predicted in advance. In this situatior, stack overflow can r.- -

only be prevented by continuous monitoring of stack size, which can require a substantial
processing overhead. The run time kernel we use fails to do this, resulting in occasiunal
stack overflows that crash the system. We would not expect these problems to occur in a
mature Ada run time kernel, but it is interesting that the interim Ada compiler has been
less of an obstacle to software development than the Ada run time kernel.

Ada provides for dynamically created objects, tasks, and subprograms, and a legal Ada
compiler and its run time kernal must support all of these constructs. Nevertheless, for
the immediate future, the prudent programmer will produce substantially more reliable
software by minimizing or eliminating the use of dynamically eized objects and complex
tasking relationships. Generally, if asto d akgso uporm r
in tatae nya h einn fprogram execution, and if these packages/subprograms

A continue to operate on objects of fixed size for the remainder of the program, then all
will be well.

III ADA FOR MULTIPLE COMPUTERS

The process of distributing fault tolerant software among multiple computers provides one
of the best illustrations of the effect of the Ada language design on the design of
systems implemented in Ada as well as the importance of Ada run time software. Two
ongoing research projects at Honeywell that use Ada to implement distributed computer
software illustrate distinctly different approaches to the partitioning of Ada distributed
software.

Distributed Computer Teatbed (OCT), the first project, is implementing an experimental
distributed computer system, with several distributed computer nodes linked by multiple
high speed buses 110],(111. Figure 2 shows the overall layout of the DCT system. In this
project, ach node executes exactly one Ada program; application software and system
software, including the software for interprocessor communications are all implemented as
subproqrams or library units used by the single main Ada program executing on each node.
The application software is written and compiled separately. It uses the Ada "with"
clause to obtain the services of the interprocessor communications software, which is
implemented as a set of library units. Demonstration software to implement a message
exchange system that can continue to operate even after nodes are disabled is also
implemented as part of the set of single Ada programs on each node.

PRO
001

Figure 2. Overall Layout of the Honeywell Distributed Computer Testbed

While this approach makes the least demands upon an Ada compiler and its companion
run-time software, it forgoes some of the important Ada facilities discussed earlier.
Messages destined for another node are treated as if they were an I/O transaction. Typed
objects are subjected to an unchecked type conversion before being transmitted to another
node as a chain of 1,ytes, which, upon receipt, is converted back to the appropriate type
in the receiving node (again using an unchecked type conversion). No attempt is made to
insure that the data type at the sending end matches the data type at the receiving end.

Future plans call for embedding type information in the inter-node message to allow type
verification at both ends. In practice, this should cause no problem, especially if the
software at each node uses copies of the same library units and the internal
representation of a given type is the same on each node. However, the Ada language
deliberately does not guarantee uniform internal representations on different machines.
For example, it is permissible for an optimizing Ada compiler to use a different internal
representation for two instances of the same type if they are compiled in separate Ada I
programs. This potential conflict must be carefully accounted for in the software
verification process.

The communications subsystem is layered; upper layers are implemented in Ada, lower layers
are implemented by specialized microprogrammed controllers that run in parallel with the
Ada software. The Ada software and the controllers exchange information through queues in
a common memory. The communications controllers are high performance devices that can
dump a substantial amount of information into the incoming message queues in a short
period of time. Consequently, the Ada software must service these queues regularly.

The interim Ada environment being used to implement DCT does not permit the use of
interrupts as task entries, so a poller task is used to scan imput queues. This task then
interacts with the remainder of the Ada software in the node.

.4
-=low~ - .

Since each node contains a separate Ada program, the Ada tasking facility does not cover
interactions between tasks on different nodes. However, it is possible to construct what
is essentially an "extended rendezvous" by suspending a 'calling" task when it sends a
message to an "accepting task on another node, by suspending the *accepting' task pending
receipt of the message, and then by releasing both tasks when the communications system
successfully delivers the message. In such a case, the communications system must be
carefully designed to generate the appropriate Ada tasking exceptions if a message or its
acknowledgement ts lost of garbled. If this is not done, carefully validated Ada
software for multi-node fault detection and recovery could fail because of a single
communications system fault.

The second project at Honeywell involving Ada distributed software is called Distributed
Ada (DA) (121, [13], [14]. This project treats all of the software in a set of
distributed processors as a single Ada program. This allows the programmer to use all of
the Ada type checking and tasking features in the application software. Interactions
between tasks or subprograms on different nodes are automatically managed in conformance
with the Ada language by distributed Ada run-time software. Thus, when a task on one node
performs a rendezvous with a task on another node, the run-time software operates as
described in the earlier "extended rendezvous" example. Because all software in a given
configuration is compiled as one Ada program, the problem of differing internal
representations discussed earlier does not exist.

The DA approach requires a vehicle to specify the partitioning of the application and the
distribution of the partitioned software onto the multiple computers, while treating the
applicatior as a single Ada program. DA accomplishes this with an auxiliary language
called the Ada Program Partitioning Language (APPL). Figure 3 shows the principal DA
componenets and their relationship. The "drts" component is distributed Ada run time
support library which provides routines to link the various distributed software elements
while enforcing all Ada interface conventions.

drts one per station

Figure 3. Principal Distributed Ada Components

The ultimate goal of this approach is to produce an Ada compiler with companion
distributed run-time software that will allow any Ada resource to be located in a separate
node. The requirements that must be met by the run-time software for such a system are
formidable; all legal Ada interactions between remotely located resources must be
supported using communications links that may not be completely reliable. Of course, the
problem of communicating over potentially unreliable communications links occurs in any
physically distributed system, but in existing approaches, the application programmer
explicitly deals with the communications links and is therefore prepared to provide
exception handler to deal with errors that occur when these links are used. In DA,
however, every attempt is made to make the partitioning process independent of the Ada
program, so an exception due to a communications fault may have to propagate through
several layers until an appropriate exception handler is encountered. Furthermore, if the
system has real-l-ime processing time constraints, the run-time software must be designed
to at least raise an exception if an interaction cannot be completed within a designated
time period.

When such a system is built, the resulting advantages will be impressive. An application
- * could be designed and initially tested as a mingle Ada program operating on a single

processor. After the program is tested in this form, the software could be partitioned so
that it is distributed over several processing nodes. Interactions between Ada resources
would remain the same as in the single processor configuration; i.e. type checking and
tasking would remain the same. System timing relationships would change depending upon
the relative speed of the processing and communications facilities used.
The DA approach can be extended one step further to introduce the concept of a fault
tolerant Ada resource. If we can successfully physically separate an Ada resource from
the remainder of an Ada program while interacting with that resource in conformance with
the Ada language rules, than we can consider creating multiple copies of that resource,

0-010

II

with each copy located on a different processor. With the appropriate updating and voting
mechanisms, specialized Ada run-time software could allow the Ada program to use the
resource, even if one of the copies of the resource were corrupted or destroyed. If such
a system could be validated, it would provide enormous advantages to the fault tolerant
system designer. Redundancy could be applied to individual objects without the need to
protect a large number of less critical objects.

Such a system, is far from realizable today, but it can serve as an objective as the use of
Ada in fault tolerant applications matures. In the meantime, a number of more pragmatic
approaches can be used to move in this direction.

IV. CONCLUSIONS

Most fault tolerant computer architecturs for critical applications use software
executing in parallel on multiple computers to detect, contain, and recover from faults.
The Ada language supplies synchronization and timing facilities to manage such multiple
tasks, although current implementations of the language are limited to tasks executing on
a single computer.

Ada includes a number of facilities, such as task synchrcnization, package initialization,
and type checking, that must be supported by run-time software. System designers that use
these features should be aware that these facilities require resources and time, and they
may give rise to faults. Poorly implemented Ada compilers or Ada run-time software can
seriously degrade the reliability of systems that use them. Conversely, an accurate,
verified Ada compiler and fault tolerant Ada run time support software can provide the
builder of a fault tolerant system with a number of reliable facilities that otherwise
would have to be implemented in the application software.

As time passes and Ada technology progresses, and as a large community of users tests the
compiler and run-time software under an ever-widening variety of conditions, the set of
troublesome constructs will diminish, and higher quality Ada software ill emerge. Then,
Ada will take its place as a viable language for the implementation of critical software.
In the meantime, the user who is accustomed to assembly languages or to small programming
languages should be aware that a significant amount of the functionality of his
application system may be embedded in Ada run-time software of which he has no detailed
knowledge.

A distinguishing feature of many fault tolerant software architectures is the use of
software modules that are executed in parallel on multiple computers. Ada includes tasks,
which are program modules that could be executed in parallel on multiple machines with the
appropriate compiler/run-time support. If these facilities were available, a fault
tolerant software system could be written as a single Ada program, partitioned among the
multiple computers.Such facilities are not available today, although research efforts are
in progress to develop them. In the meantime, multiple computer softare must be written
as multiple Ada programs, one per computer.

The concept of distributing Ada tasks among multiple computers can be extended to
distributing any named Ada resource, such as a data object or a subprogram, subroutine, or
function. Furthermore, the concept of remotely located Ada resources could be extended to
introduce the concept of a fault tolerant resource; a resource which is not only remotely
located, but which is also replicated. In such a system, many of the fault detection and
recovery mechanisms, such as voting, that are new coded as part of the application
software, could be moved into the Ada run time software.

'L00

"-S *1

REFERENCES

1. U.S. Department of Defense, *Requirements for High Order Computer Programming
Languages," "Steelman," June, 1978.

2. U.S. Department of Defense, Reference Manual for the Ada Programming Language,
January, 1983.

3. Joshi, R.D., "Software Development for Reliable Software Systems," Journal of Sysress
and Software, Vol. 3, pp. 107-121, 1983.

4. Buzzard, C.D., and Mudge, T.N., "Object-Based Computing and the Ada Programiing
Language," IEEE Computer, March, 1985.

5. Kamrad, J.M., "Real Life Consideration of Ada Runtime Organizations," AIAAiIEEE
Digital Avionics Systems Confernece, pp. 472-476, December, 1984.

6. Pratt, K.D., and Sherrill, R.L., "Experiences with the Development of a Real-time
Multiprocessor Executive in Ada," 1985 IEEE Conference on Aerospace Electronics.

7. Hopkins, A., "FTMP--A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft,"
Proceedings of the IEEE, Vol. 66, pp. 1221-1239, October, 1978.

8. Wensley, J., "SIFT: The Design and Analysis of a Fault-Tolerant Computer for Aircraft
Control, "Proceedings of the IEEE, Vol. 66, pp. 1240-1255, October, 1978.

9. Rennels, D.A., "Fault-Tolerant Computing--Concepts and Examples," IEEE Transactions on
Computers, Vol., C-33, No. 12, December, 1984.

10. iHeimerdinger, W., and Bhatt, D., "DCT--A Testbed Approach to Distributed Systems
Pesearch," IEEE 1984 International Conference on Data Engineering, pp. 552-559,
December, 1984.

11. Silverman, J., "Communications in a Distributed Computer Testbed," Proceedings of the
Fourth International Conference on Distributed Computing Systems, May, 1984.

12. Cornhill, D., "A Survivable Distributed Computing System for Embedded Application
Programs Written in Ada," Ada Letters, Vol. 111, No. 3, November/December 1983,
Revised February 1984.

13. Cornhill, D., "Four Approaches to Partitioning Ada Programs for Execution on
Distributed Systems," IEEE 1984 Conference on Ada Applications and Environments.

14. Cornhill, D., "Partitioning Ada Program for Execution on Distributed Systems," 1984
IEEE Computer Data Engineering Conference, April 1984.

I44

-!~7-

.-

DESIGN ISSUES
IN

DATA SYNCHRONOUS SYSTEMS
by

Gregory M. Papadopouoo
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

SUMMARY

Fault tolerant data synchronous systems are ones where the outputs of all correctly operating redundat channels are
guaranteed to bit-for-bit agree, independent of whether the channels are clock, instruction or frame synchronous. Data
synchronous systems offer a form of fault tolerant processing capable of correctly supporting a very general class of programs.
In fact, the redundancy becomes relatively transparent to the programmer of applications for data synchrorous systems,
making them ideally suited for complex, algorithmically intensive programs that would be otherwise impossible to support.

The various Apects of the design of correct data synchronous systems are examined in detail. These include: Source
consistency, the requirement that all correctly operating channels receive precisey the same inputs, Event synchronization,
the problem of keeping the time skew between channels within predetermined bounds, as well system initialization. The
unsolved problem of latent faults is also presented along with the need for self-test heuristics. Sequential fault tolerant and
parallel fault tolerant approaches are contrasted for systems requiring protection from multiple faults. Both hardware and
software solutions to these problems are given, emphasizing system performance and economy.

The paper concludes with the application of these techniques to the design of triplex fail-operational and quadruplex
and dual-dual-dual fail-operational-fail-operational systems.

1. INTRODUCTION
Data synchronous systems employ exact bit-for-bit voting of outputs, offering an application-independent way of

protecting against faults 11). In order that an output disagreement is only caused by a fault in the voted-out channel the
following conditions must hold:

. Determinacy. The channels are deterministic functions of inputs to outputs. That is, given identical initial

conditions then the same sequence of inputs will always yield the same sequence of outputs.

2. Initial Consistency. The initial conditions are identical among all of the redundant channels, they bit for bit
agree.

3. Input Consistency. The input streams, for all time, are identical to all of the redundant channels, they bit-for-bit
agree.

Determinacy is relatively easy to guarantee with digital processors, although asynchronous events such as processor
interrupts can violate this condition if not properly handled. The second condition is the initialization problem which
consists of two subproblems: power-up or system restart, and retry or channel restart. The third condition is the input
consisency problem and is the subject of much attention in this paper. The correct implementation of input consistency
requires a different, and somewhat more complex and costly, systems architecture than might be expected to support sample
majority voting.

For real-time systems, there are additional requirements that deal with producing outputs and the gathering of
inputs in a timely fashion. These reduce in one form or another to event synchronitioan constraints. We are interested in
systems that guarantee one or both of the following event synchronisation constraints.

1. Bounded Skew. This is a minimum guarantee to make a useful real-time system. The basic requirement is that
healthy channels produce redundant outputs and request redundant inputs within some bounded amount of time
of each other. The maximum skew that can be expected among healthy channels is a measure of the tightness of
synchronisation. Knowing this number allows the construction of correct timeout tests.

2. Total Ordering. This is a guarantee that the sequence of outputs produced and inputs requested will always
occur in the same order among the different channels. Having such a guarantee can simplify many aspects of
interprocemor communication bet may sub atially complicate proceso interrupts.

Solutions to the event synchroisation problem fall into two broad categories. Fame synJonos system require the
program or operating system to generate periodic points in tame whe channel resynchroizaton will occur and interrupts
can be rmolved. Thes points ae aatrally identilable as the system sample rate or some harmonic, but do require explicit
programming constructs ad are thereor not completely application independent.

histutiom synclkusom system perform automatic reyachroniaton and interrupt resolation every a imtnctioas.
Typically, a is on the order of ten instruct tim s or so. These system have the added advantap of not requiring a
regular fame rate structur an t adlgoritms being performed mad thus yield superr applicat indepndece over
frame syachronus systen. Their prinary drawbacks are in the form of fairly substantial dmigp restrictious of the

A poesow thnmselves: a reqtirment that all channel activity can be measAd in iastruction times.

§P

-=Oar

An even stricter form of instruction synchronization is the so-called 1microframe or dock synchronous systems. In
this case processor resynchronization occurs every a clock ticks. This imposses the added design constraint that all channel
activity can be measured by a single processor clock.

Input consistency and event synchronization only form necesary conditions in the construction of correct fault tolerant
systems. The system designer must cope with the possibility that certain critical assumptions may not be valid. They are:

I. Faults are immediately detectable. The types of systems required in most flight critical applications are ones
that provide high levels of instantaneous reliability as opposed to long term availability. Crucial to meeting this
goal is the determination of the system fault state at dispatch time, and continuously for systems that assume
sequential faults. The problem of latent faults has not been adequately solved but must be seriously addressed
by the designer.

2. Faults are independent. This assumption is pervasive in most designs and failure analysis. The problem with
assuming the contrary is that the analytic design problem becomes intractable. However, systematic or simulta-
neous faults may be experienced in the course of actual operation. The design must be robust for fairly broad
classe of simultaneous and transient faults and yet not introduce new failure modes in the process.

In the following sections we shall develop a hypothetical triplex redundant system in order to illuminate these various
design issues and some of their possible solutions. We will then examine the implications of a quadruplex system with the
attendant reconfiguration problems, the alternative approach of dual-dual-dual, and finally multiprocessors.

2. A TRIPLEX DATA EXCHANGE NETWORK

Figure I shows the general topology of a triplex data exchange network. There are a total of six fault sets in the
design: three processors and three restoring stages. Theoretically, only four fault sets are required as long as we ensure
that the processor hosting a sensor value that is being exchanged does not participate in any of the restoring functions. In
most case, the six fault set approach will actually simplify the engineering task and permit higher performance through
pipelining. This is the methodology of Draper Laboratories' clock synchronous FTP 121.

Scitsors

Pr~~~Proemr A ttcL

Flgue 1. General Topolog of a Triplex Data Exchange Network

The system asue that sesr are attae directly to a procesor. In the case of triple-rndant inputs, eachpboer hosts a single sensor ad suhsequent data exchanges make all values known to all proceor. It shoud be clear

that althzo the redundant sensor values are associated with each other, they are not the same measurement. Thus, a
separate data exchange must take place for each sensor. in the triplex case, a total of three exchages. Simplex ad dual-
redundant sensor might be cross-strapped to two processors under the assumptio that the sensor reliability is signfiantly
higher tha the p sor relaility.

i.g. 551..e W.te Total ofdeTrip ad Bouded Skew
The in of data umes reqaird between the variot etemet depends on the kind of event syclcad eisatiou tat

the sstem pesrsmi The easiest case to undersad i wh the pocmsosm produce outputs and requst inputs within

2 . ystem Wit TtalOrderi ad -

theI syste pefr hpahtcs oudrtMi hnteprcsospo upt n eus nuswti

a bounded amount of time of each other and the outputs and input requests are totally ordered. Suppose that a sensor
value hosted by procsor B needs to be read by some program. The data flow of the exchange i shown n Figure 2. The
sequence of events are as follows:

1'roccw\sr i t - - '7 7 f 1 1. Rcad Sensor

m-ud od 1, NP'(orssor B

l hI'c ,s A sor S il A

1. Rad.Proessr Bre rotessnor Chs sn st b '~e c8dBmstnt ror ydiee nte

r. ii iS[-2Processor o rere I

the exchsa iiisl coman *FRARD1ng whia ichisrcstersoigsae htdt spoesrBs

F

b~3 Restorded

i rocssorC - R, r . si-

""

I'rssccssis C \- Ri-inr a~s

Figure 2. A Sample Data Exchange for a Single Sensor Value

I. Read. Processor B reads the sensor whose value is to be exchanged. B must not perform any decisions on the
basis of the value it obtained. It must use the value returned by the data exchange.

2. INtiate. Processor B forwards the value it obtained to all three restoring stags. Similarly, channels A and C send
the exchange command FORWARD BW, which instructs the restoring stage that data fom procssr B should
be forwarded. t

3. Restore. The restoring stage notices the request to forward B's data value, The daa from B is restored (is.,
received and then retransmit) and forwarded back to the procsors. Each restoring starts a timer whenever the
two FORWARD B commands have both arrived. If the timer expires before the value is obtained from B then

* t Implicitly, processor B's message als contains a *FORWARD B' command. Implementations might choose to aws
send dat values from processors A and C which are simply discarded by the restoring stages. A and C rend 'phantom'
sensors in the 1/0 locations where B actually map its real sensors. TIs permits all three processors to run identical code

_ that requires no channel-peciflc modifications. This is the approach of the Draper Vl'P.

AL.

-=Now

-'4

the restoring stage forwards a timeout value instead. The timeout time must be greater than the maximum skew
between the processors that is guaranteed by the synchronisation algorithm.

4. Resolve The processors bit-for-bit vote among the values received from each restoring stage. If any two values
exactly agree then this value is used as the consistent version of the sensor data. If there is a total disagreement
then the value is marked as an error value.

At the end of this cycle all healthy proceors will contain identical values for the sensor (error or otherwise) in the
presence of a single arbitrary fault of either the sensor, a processor, a restoring stage, or the interconnect. An important
feature is the placement of the timeout test for the transaction at the restoring stage rather than at the procesors. Suppose
that B had a skew arbitrarily close to the timeout value (that is, B is faulty). The results of the timeout test in each of
the restoring stages must be considered to be a random event. If at least two of the restoring stages timeout then the
processors will resolve a timeout for the value. If only one has a timeout then the processors will resolve either a data
value, if the input values agreed, or an error token. In any case, all fault free procesors will obtain the same result. This
would clearly not be the case if the timeout test was performed by the processors.

The buffering needed in the various stages is only one message's worth as long as new values are not exchanged until
the previous results are consumed. If this is not the case (vis., burst transfers) then a simple first-in-first-out (FIFO) queue
will be required on each of the inputs of the restoring stages and the resolvers (input voters on the processors). The tighter
the synchronization as compared to the message generation rate, the shallower the depth required for the FIFOs.

2.2. Systems that Reorder Outputs and Inputs
In the example above outputs and inputs always occur in the same order among all processors. Suppose we were to

relax this constraint so that asynchronous events such as processor interrupts can be accommodated. For instance, an
interrupt might occur in one processor just before a value is to be exchanged while another processor just initiated an
exchange. The interrupting routine will most likely require data consistency exchanges. This will change the order of the
exchange requests made by different procesors. This scenario is illustrated in Figure 3.

Plocessor A Processor B Processor C

"lime INST i INST i-I INSTi -1

INSTi - I INST i INSTi
,lclive ,
1h.sk INSTi + 2 INSTi + 1 INSTi + I

INSTi + 3 INSTi + 2 INS I' + 2
E,\CI IANGF INST i +- 3 INSTi + 3

liintlrkipt

F INST k INST k INSI' k

Inlerrupt " INSF k + I I NSF k + I I NST k + I

I [.\CHANGF FXCIIANGE FXCHANGE

Figure 3. An Asynchronous Event Can Reorder Exchange Requests

The buffers can no longer be simple FIFO. Instead, each data value to be exchanged must be tagged with a unique
identifier. The restoring and resolving stages must match the incoming values on the basis of their tags and tht-, vote
among them. The names must not only be unique be also consistent among the processors. One possible solution is to use
the tasklD of the generating task as the data tag, This assumes that a task will have at most one outstanding exchange.
Also, a faulty unit can produce any tag that it wishes. The restoring and resolving functions must be designed such that
these bad tap do not induce erroneous matches. This as not diicult to solve but must be considered.

A resonable implementation, shown in Figure 4, would be to associate a FIFO queue for each task on the inputs
to all restoring stages and resolvers. The timeout data must only be accumulated while a task is active, so the restoring
stages mus be aware of current task. The processors should perform their context switches as close in time to each other
as possible. It is also important that attempting to read the results of an exchange is an interruptible process, otherwie

V - --

the system may deadlock. Another consideration is a babbling processor or restoring stage that produces more data values
than the associate FIFOs can hold. The implementation must take care not to allow an overfull FIFO on one input from
corrupting other good input streams. In practical terms this implies that the FIFO management of each data stream be
performed independently.

RHE'lIU1N(. ST AGE

Mesacge FII-0s

Romrer

I. ask, I a

Processors -m 'Io Processors

L\

In-mit,,g V1ttst I' drt' Itpttclm hoat er,,tg 1,, 1hrjr iaskllD

(,ar.,Ilr prl tc's tttsst,,'s frow, tMe acirte task queute

Figure 4. Multiple Message Queues Tolerate Re-ordering

Systems that permit re-ordering of inputs and outputs are more difficult to manage than ones that guarantee a total
ordering. The tradeoff, of course, is the effort Ai takes to provide total ordering versus the effort required to perform
consistency maintenance under conditions of re-orderingi Generally speaking, it is currently more profitable to invest in
maintaining total ordering rather than provide the required message tagging. As systems become more complex, including
multiprocessors and artificial intelligence, this tradeoff will require careful examination-it will become progressively more
difficult to constrain applications and distributed operating systems with the total ordering requirement.

3. FRAME, INSTRUCTION, AND CLOCK SYNCHRONIZATION
The efficiency with which systems perform redundancy management is intimately related to the type and degree of

event synchronization supported. The degree ofynchronisation i the bound on the worst case skew that can be expected
between identical input and output requests among the redundant processors. Frlame, instruction, and clock synchronization
techniques provide progressively tighter event synchronization bounds. The qualities and implementation considerations
of these three appye!drhes will be dealt with in some detail.

Once a designer has adopted a data synchronous design methodology, the approach taken to event synchrouization
will ultimately have the most far reaching implications for overall system complexity and performance

3.1. A Synchronizing Exchange
The realization of a synchronizing exchange is quite similar to a data exchange. There are two important distinctions,

however. First, the information content of the messages is in their relative times of arrival not, necessarily, in any data they -- -

carry. Second, whereas there is only one source of data in a data exchange, it is convenient to exchange synchronizers from
all procesors simultaneously. As shown in Figure 5, a synchronizing exchange in our hypothetical triplex systm takes the
following steps:

I.- Iaitiate. Each processor broadcasts a synchronization discrete or imsage to all restoring stage.. The content of
the meage a not important, only that it a a synchronization exchange.

2. AiM Selectio. Each restoring stage records the relative time of arrival of the synchronisation ngna After
the arrival of the second message the restoring stage generates its m synchronization inage back to the

3. Secnd S ection. Each processor, in turn, recordis the relative time of rrival of the synchronization Meae s p
from each of the restoring stae , again selecting the mid-value message.

-. .AME INSTR-TION AND -OCKSYNCRONIATIO

.4 t

Theeficinc wih hic sstes erfrmredadn -=msagmeisiimeyretdtoteyp ndeeef

7_
'7 _

11irc-orr N

Recloing

Mid MId ka

PFrost r N _,,,,,

2Fi'risirPocs Selection

Revlcrig stages selc 3eolcge aol for,,ard s, tit- ieiago lvt processor,

k e s o r i n gM
i k a

Mid Md tca

Proccsso N] Pcocssor N

3. Second Selection

4. [Delay Peaces sors select sectint edge. wail a delay lime. anddthen proceed

Figure 6. A Sample Synchronization Exchange

4. Delay. Each processor then waits a fixed amount of time after the second selection to accommodate a slow proces-
sor. This delay should be equal to the worst case skew that could have accumulated since the last synchronization
exchange.

T"he selection operations are not as simple as might first seem. All synchronizers (which are arbiters) are subject
to inetastabl statesi conditions wiere it may take an arbitrarily long time to resolve the second edge. Fortuately, the
probability of a metastable state decays exponentially with the duration of the state. It is therefore possible to make these
probabilities as low as those of an actual hardware failure.

In practical systems, the restoring stages will apply some sort of filtering to the incoming signals, discarding any input
that has a transition outside of a window that the restoring stage expects. This implies that the restoring stage maintain
a notion of time as well.

A fInal problemi that of initialization. The above algorithm only works when the procefsors are already synchronized.
It thus accounts for nominal drifts in the proceesors timebases as well as the failure of any single processor. Initialization
can be accomplished in a variety ways but a Common approach is as follows. After power-up or restart each procssor
attempts a synchronization exchange at regular intervals. Each processor chooses a different intierval, derived somehow
firom the processor ED (A, B, or C). The different periods must be relatively prime. After a short time, two processors
will 'colide' in their synchronization attempt. T'hey then choose another period and attempt to synchronize with the last
procsor.

This initialization algorithm has the problem that it may not work in the presence of a processor failure. It is possible
for a failed processor to initially synchronize with the two healthy processors such that these processors are not in synchrony
with each other. A more sophisticated algorithm that employs retry (randomly excluding a processor) can be employed if
restart is required with a faulty channel.

3.2. Frame Synchronism

The least hardware-intensive approach to event synchronization is frame synchronization. In this case the processors
perform synchronizing exchanges periodically under software control. This technique seems especially well-suited to control
systems where a natural "major frame cycle* can be identified.

It is also common that such systems wait until the frame boundaries to perform data exchanges, usually as block
transfers. Figure 6 shows a possible timeline for a frame synchronous system. During Frame i the processors gather input
data from their sensors. At the beginning of Frame i + 1, the processors perform a synchronizing exchange to eliminate
any skew that may have developed during the last cycle. The proc~sors then proceed to exchange the data and process
it during Frame i + 1. Finally, the results of the computation are exchanged at the beginning of Frame i + 2. Note the
inherent latency in processing a given sample point.

Time -

Irame i Iraie i t- Irarne i + 2

a1. Se selnsorS 1). Fxchinge c. Proccss d. Fxcharige c. Otlplt Com]iands

Figure 6. A Typical Frame Synchronous Time Line

A major advantage of frame synchronism is the simplicity of implementation. The synchronization network can be
embedded in the data exchange hardware, imposing very little additional design constraints or complexity. The fundamental
limitation is the fairly strong assumption about the periodic nature of the application. Certainly all inner loop control
systems have an obvious systolic structure. Furthermore most of the computations can be assigned a rate group, a sub- or
super-harmonic of the major frame rate of the system.

There are several times when the rate structure can break down, making the frame synchronous system vulnerable
to inconsistent states among the channels. The common situation is a processor loading condition where the assigned
computations can not be completed within the frame schedule. Tasks are then prioritized and the scheduler assures that
the most crucial tasks are allowed to complete. This means that the lower priority or background task may be in slightly
different states at the end of a frame. For example, a slightly faster processor may have just finished a computation while
the others ran out of time. Care must be taken to defer the exchange for the task until the next cycle when all processors
have taken it to completion.

But how is the system to know? Suppose there was one slow processors and two fast ones. At the end of the frame cycle
they exchange task completion flags. Noting that one processor did not complete, the data exchanges are deferred until
the next cycle. What happens if the task still does not complete the next cycle? Do we assume the slow processor failed?
Suppose the tasks are of such low priority that they sometimes do not get any cycles during a frame (eg., a background

It should he obvious that frame synchronous systems depend rather heavily on the behavior of the application being
supported. In simple control applications the necesary restrictions are relatively benign. The more complex software
systems of the future might find them overbearing.

3.3. Instruction Synchronism

A key observation about two processors started in the same state with identical inputs is that, in the absence of
asynchronous events, they will perform the exact same sequence of instructions. We can therefore decide to perform
a synchronization exchange after every a instructions and be guaranteed that the very next instruction executed will
be identical on all healthy procesmom. Such mechanisms require direct hardware support and the systems are termed
instruction synchroonos. This is shown schematically in Figure 7.

Instruction synchronism offers consideraldy more application independence than frame synchronim It doesn't matter
which set of a instructions faill between the synchronization points, so the application is not bound to the synchroniation
period. An important side-elt is that data exchanges can be performed much more eficiently and coded in the instruction f
stream rather than deferred until a frame synchronization point.

. 4-_ --.. - --- -- - - -

A K

P'occssor A P[ro(s'-or B Iii icsor C

limC INST I I NS] i - I

INST i I- I INST i INST i - 1

INSF i m- 2 INSTi + I INSI i
,k'Vh M umbLflro

INSl'i ±- 3 INSi - 2 INSIi - I

Mmit e"wa. INSTi + 3 INS'i + 2

wa.it wat I 'N S i + 3

wail w;Iit "al 'lll

INSTi + 4 INSTi + 4 INST i + 4

Figure 7. An Instruction Synchronous Control Flow

Instruction synchronous hardware must be able to identify and count instructions as the processor performs them,
and more importantly, be able to busy-wait the processor until the completion of the synchronization exchange. This
requires that processor activity be regulated in terms of 'instruction times.* Another difficulty is that complex instruction
set microcoded machines can have wildly different execution times that are data dependent. Thus the sequences of n
instructions might take markedly different amount of times to perform. The synchronization mechanisms, particularly the
timeout delays, must be set according to the worst case (longest) execution sequence. A good number for n would be
between 10 and 1000 instructions.

3.4. Clock Synchronism
The strictest form of event synchronization is clock synchronism. Clock synchronous processors perform synchroniza-

tion exchanges every n clock ticks. An approach is shown in Figure 8. A nominal cycle consists on n - I regularly spaced
edges plus one "stretched' cycle. A processor that determines itself to be slow omits the clock stretching while a fast
processor would stretch the clock any extra cycle. This preserves a constant number of clock edges presented to each
processor in each "microframe'.

n-2 n-1 n I

Clcck A B

n-2 n-I n 2

Clock C ,

Sinchr iiing Edge I N If 'tit Yates

Figure S. Delaying Edges in Clock Synchronous Systems

There are several advantages of this approach. First, the time interval between exchanges is purely a hardware
design parameter and can be selected with considerations of performance and economy, typica ten miroseconde or g,
completely independent of the application. Second, any event that can be related to the processor clock (et., an interval
timer interrupt) can be very efficiently processed.

Clock synchronous designs entail substantial restrictions, however. The most serious of which is the requiremeant that
all prcr acty be desozmI&Me by a aihgle clock All memory, bu transactions, and IO operation must take a
predetermined number of cycles. This might pose serious problem for error-correcting memory designa. Typically, error-
corrected memory takes longer to complete when correcting an error, an indeterminate event. Dynamic memory refteh

--mor

. '~ -!

/
.-

must be scheduled against a global clock. Even simple I/O can be troublesome if the devices introduce wait-states that are
dependent on input data-like an analog-to-digital converter.

Overall, clock synchronous systems provide the most transparent and application independent approach to redundancy
management, but impose the most severe processor design restrictions.

3.5. Interrupts
Interrupts, the asynchronous change of program Bow in response to an external event, need special attention in a

redundant system. The problem was developed in Section 2.2-an interrupt might occur at slightly different times in the
execution sequence of the processors. This would leave the processors in inconsistent states during the interrupt routine,
which generally look at various aspects of the system state. Or perhaps an interrupt occurs in the middle of a data or
synchronisation exchange, leaving partially completed transactions in the communication network and possibly leading to
erroneous timeouts.

There are two distinctly different ways to accommodate interrupts in a redundant system. One approach is to permit
the possibility of the interrupt occurring at different execution points but restrict the activity of the interrupt handler such
that inconsistencies are avoided. The more general and preferred approach is to guarantee that the interrupt occurs at the
same point in all of the redundant execution streams.

The solution by now is familiar-interrupt requests muot be exchanged in order to be made consistent and then
synchronized to the processor instruction streams. Figure 9 illustrates an interrupt exchange network for our hypothetical
triplex system. The interrupt discretes ae broadcast to a set of interrupt masks. All active interrupt conditions an then
ORed and a single interrupt signal is made consistent. This interrupt signal is on/y examined at synchronization points:
frame boundaries, after every n instructions or clock ticks, as appropriate. In the case of frame synchronous systems, the
interrupt distribution will almost certainly be performed using the data exchange network and only exazined at each frame
cycle. In this case the signals ae more properly termed intojaects, or controlled interrupts.f

P'rocessor Rcstoring Stage Processor
M,,,,,,:Tm)IX VYn

L

P'rocessor / \ R c'storing Stage A Processor

/t lt, r'o$ -] --
-

-OX, -1 *15 ra

7 'I
Priccasot I Restoring Stage IPoeo

Figure 9. A Sample Interrupt Ebcchawg Network

3.6. Wavefrot 8ynckarOOMn
It seems that the rather simply state condition of consistent states among redundant chaneis has become very

baroque indeedl For a clock or istertion synchronous machine the folowig hardware-spported function e required:

t Of course even a frame synchronous system, will usually have some form of hardware interrupt-the interval timers

med to schedule tasks mad ws demarcations for frame boundaries.I

-'-

I ,
j

•

A data exchange network, a synchronizer network, an interrupt consistency network. Furthermore, a system that supports
direct memory access or distributed memory might require additional hardware mechanisms. These various consistency
operations are fundamentaly related, however.

The wavefront synchronism concept developed by Hughes [31 is a clever and efficient unification of all of theme demands.
The basic idea, applicable to instruction and clock synchronous systems, is to encode int2r-channel transactions into periodic
data exchanges. These transactions would always happen at the synchronization points (every few microseconds), and the
.wavefronts of the redundant messages would be used to judge and effect synchronization adjustments between the
channels. The messages would be composed of several fields: a data field for data exchange, an interrupt status field, a
DMA request field, etc. If during any particular cycle a given field is not used then it is simply set to a null value.

It is possible to encode these messages on say single optical fiber links. Figure 10 illustrates the engineering model
of a wavefront synchronizer "box." The wavefront synchronizer for each processor would accept a number of "raw" data
on its inputs. Every wavefront cycle the data is sampled, exchanged with other restoring stages, and presented as 'good'
consistent data on the outputs. A local processor clock is also generated. Thus any data that has the possibility of being
inconsistent across channels is simply fed into the boxes' inputs and then read from its outputs. The existence of VLSI
version a wavefront synchronizer would go far in the realization of general-purpose economical fault tolerant processors.

Inicript Requests-

I)ztt: Out <' K Fir

Dat In St Iges

SN Clock I

Figure 1O. A Wavefront Synchronizer "Black Box'

4. SEQUENTIAL FAULTS
i In many flight critical applications, triplex fail-operative redundancy is inadequate. Instead, two independent failures,

must be tolerated without sacrificing correct operation. If protection is needed against two su ntaneous failures then five
processors and ten restoring stages (two levels of five) would be required. Many times, however, it is adequate to protect
aainst sequentia falt and thus reduce the number of proceor and restoring stages to a more economical level-four

i of each.

4.1. The Burden of Reconlguwatio

One very nice property of our triplex system was a complete lack of reconfiguration logic in the event of a processor
failure. The voting logic automatically excludes a single defective processor. Suppose we wanted this system to fail-sfe in
the event of a second processor failure. Under these conditions we would have to somehow disable the faulty processor to
preclude a second procesor failure from "colluding' with the first. If the processors were to fail in the same way, then the
two faulty processor would vote out the remaining good one.

The same condition holds in the quadruplex case. There is the possibility of pairwase agreement, a paradoxical condition
where two faity p inoagreebt diverge for the twohealthyprocessors Inthis casethereisnowaytodiscern

the good from the had. Indeed, the probbility of pairwise agreement would seem to he quaite high. VLSI circuits tend to
have design correlated failure modes, for instance metallisation opens due to migration. Random failures of VlSI circuits
are characteristic of maufacturing defects, not operating functions. Therefore, any system that is intended to tolerate
sequential fault must have two ateributes.

I. T vmes, denticpron. A falty channel must be recogize within a prescribed amount of time. Of course, the
failure diagnosis must he made cosistent among the remaining helthy channels. Remember that successful
synchronization ad data exchanges do not imply fault-free chaes.a

2. Faut Maskien After identikation, the variou& osistency exchange mechansms must be oefigute to litely
igor a ch that is diagnose as faulty. The remtinin stag must ao be reconegurd.

Tb re condiution hlc sutantially adds to the compeiity of the exchang mechanism.. Not ol must the
ap priate codfrm tion reg.Inde be provided but th i must be some policy for correct tnitimat oo power-np, and

havte dsing corelaed valuroes,. o ntnemtliainoesdet irto.Rno alrso LIcrut

T e role is rtic uart vexing f the retopring stag .m o should theorleay priyiste v rsor ingendtdt oba
te cotalfaulos data? Should the stages he required to pe data exchane for a special escape seqee

,- ,,f1. - i- Afaulychnnel m od b recognized within a pre a o

configuration data? Should (yet another) set of dedicated lines be provided to control their configuration? Should the
reconfiguration commands be voted from all of the processors or should there be one "host" processor for each restoring
stage?

Overall, the reconfiguration problem requires a great amount of engineering effort. It is fair to conclude that quadruplex
systems are not instantly more reliable than triplex ones, just because there is an extra processor. Systems that tolerate
sequential faults are substantially more complex, and should not be viewed a simple extensions to single fail-operative
machine&

4.2. Latest Faults

A lateaS fault is a malfunction that has not yet induced a channel to obtain incorrect outputs. That is, the malfunction
has not yet been excited in a way that is observable at the outputs. The problem is that some future input data or program
will excite the fault. In a triplex system the consequences are an overstatement of the actual instantaneous reliability of the
system. In a quadruplex system two identical latent faults in different channels could cause a pairwise agreement disaster.
It is therefore very important that the possible failure modes are routinely excited during operation.

Suppose we desire a quadruplex system with an instantaneous probability of complete failure equal to 10- 10 per flight
hour built out of procemors that have a mean time to failure of 104 hours. Therefore the probability of any single channel
failure is on the order of 10-4 per hour. The probability of two successive failures within some small time t is

p s 12t * 10-4 * 10-4.

In order that p be is than our target reliability, t must be less than 10- s hours. Therefore, we must not take more than
about three seconds to correctly diagnose and reconfigure a faulty channell

Self-tests are fundamentally heuristic in that it is virtually impossible to generate an adequate fault model against
which to design test routines. At a very minimum the self-tests should grade 100% against single stuck-at faults. Not that
stuck faults are particularly likely, just that this guarantees exciting each gate in the system.

Unfortunately, with commercially available processors, 100% real-time stuck-at fault coverage is practically impossible,
due mainly to the many (effectively) uncontrollable or observable states in the system. Processors capable of such rigorous
testing must be designed specifically for the job, most likely employing serial scan path techniques. This is still an open
research issue. For the time being, the prudent engineer should employ processors that have a good deal of field experience
and avoid the leading edge. In any case, a comprehensive set of test routines must be given top priority. The various
aspects of the channel, especially busses, memory, and I/0 should have testability features designed-in. For example, all
states that can be set must be able to be read. Error detection hardware, such as parity, watchdog timers, etc. must be
periodically tripped in order to test their correct functioning.

The problems of latent faults and associate self testing are presently unsolved and are extremely challenging. They
must be seriously addressed by the designer, especially in systems that are intended to tolerate sequential faults.

4.3. Self-Checking Pairs
Given the attendant difficulties in system reconfiguration, it may actually be cheaper to employ more than the minimum

number of procsors than to supply extensive reconfiguration hardware. One approach, employed in the Honeywell
MMFCS 141, is the sellchecking pair. The concept, shown in Figure 11, is quite simple. Two tightly coupled processors are
run data synchronously. Consistency maintenance with only two processors is almost trivial-a datum is simply braodcast
to the other half. The outputs of the procesors are bit-for-bit voted. Any disagreement causes both processors to be
removed from the system. Importantly, both of the dual-redundant outputs are broadcast to other pairs in the system.
A receiving pair votes on the dual-redundant stream, if they agree then the sourcing pairs' correct operation is validated.
This removes the output voting logic as a potential single-point failure.

The self-checking pair is viewed as a single self-diagnosing module. The system never "reaches inide" the pair to
determine which half actually failed, dramatically simplifying reconfiguration. A fail-operational system is formed using
two self-checking pairs, or a total of four processors. This has equivalent reliability properties of a triplex system, however
no restoring stages are required.

Similarly a dual fail-operational system can be onstructed out of three self-checking pairs, or a total of six processors.
In this case there is more than one "listener" of a pair. Thus additional consistency maintenance hardware is required
(currently missing in Honeywell's approach). Fortunately, the exchange mechanism is no more complex than that of a
triplex system and only needs to make a single bit consistent, monitor compare or miscompare, rather than an entire
memage.

Self-checking pairs modularize the redundancy management problem and appear to provide an attractive and extensible
alternative to the classical triplex and quadruplex approaches.

4

exo"

N) In'

Pio esor OuC

I'mccssor IJ* 4.O.. '

lFigure 11. A Self-Checking Processor Pair

6. MULTIPROC .SSORS

Avionic systems are not made from just a single set of redundant channels, but many cooperating (usually) and diverse
components. Suppose that the data synchronous design methodology is employed in the design of each 'box." How are
they to be interconnected in order to preserve the reliability goals of the system?

Several consistency problems, particularly mode changes, appear at the system level as well, but with an important
distinction. The condition that makes input consistency difficult is the distribution of a siAgle source. In the case of
intercommunicating sets of redundant channels, redundant information sources exist. A system design should not squander
these redundant streams but employ them to simplify global consistency maintenance. At the top level, consistency
maintenance is a problem of communication.

The multiprocessor problem doesn't really make sense, however, until the software design issues can be solved. Just
as the sampled data formulation led to difficulties at the channel level, it can have a similar nondeterministic effect at the
system level. Transactions between boxes should also be viewed as data streams-values are never lost, aliased, or otherwise
thrown away. This, however, requires a truly global approach to the software design, an overall operating system. The
system must be viewed as running a sinogearge prognrm with distributed processes being hosted by the different redundant
channels. Sample rates, data representations, and configuration control must be unified. Until this happens, avionic systems
will have difficulty exploiting the reliability provided by the different components and truly complex systems, like an expert
pilot, may be imposible to realise.

6. CONCLUSION

It is imperative that we are able to manage the complexity that new applications, particularly artificial intelligence,
are apt to bring to the flight critical realm. In many senses the intuition and techniques of classical light control systems
are inappropriate to these new areas. We will no longer be able to exploit some of the special structuree that have lead to
the current, albeit very effective, design points. An important goal in managing this new complexity, the aspiration of the
data synchronous approach, is to free the applications programmer from the vagaries of redundancy management, and to
make hardware fault-tolerance as invisible and robust as possible.

The design of highly reliable digital systems is by no means a solved problem. It is hoped, however, that these notes
have provided a perspective that will yield more general-purpose and higher integrity solutions.

REFtERENCES r.. .

IlI G. M. Papadopoulos, *Redundancy Management of Synchronous and Asynchronous Systems,' Agaid Lecture Series
No. 143, October 1985

ST. B. Smith, K1 'aflt Tolerant ProSsor Concepts and Operation,' C S. Draper Laboratot,, CSL-P-J 727, 1963
G. W. Hughes,'The Requirements of a Fault-Tolerant Supercomputer and the Wavefront-Synchronous Dakaow So-
lution,' Unpublished paper, Massachusetts Institute of Technology, 1965

(41 K. Dricoll, d d. 'A Multi-Microprocemor Flight Control System-Phase iB Fins] Report,' Honeywel Systems and
Renaweb Center, Mibapol* MN., 1964

This paper was set in Computer Modern Roman 10 point by the author using the TEX typesetting system. The
paper was printed on an Epson FXI10+ driven by an IBM PC/XT. Line drawings were created with ILLUSTRATE on a
Symbolics 3670 Lisp Machine and printed on a Xerox Dover laser printer.

-k A% W

s I

DIGITAL FAULT-TOLERANT FLIGHT ACTUATION SY~STEMS

Howard H. Belmont
Northrop Corporation, Aircraft Division

Hawthorne, California 90250

AB STRHACT

A study was made of the equipments making up a typical nlight control actuation systeam (servo
electronics, servo valves, actuators and transducers) to determine where digital technology could replace
analog technology for the purpose of providing a more fault-tolerant flight control actuation system.

The investigation involved an analysis of where digital-to-analog conversion should lake place
between the flight control computer and the analog control surface, and led to an evaluation of several
architectural design issues. Among these were how to functionally partition the system, where to locate
the servo electronics, the adequacy of military standard serial bus systems for control tversus data)
applications, and the feasibility of providing electronics which could survive severe environments.

Several actuation system configurations were evaluated. This led to recommending, as the beCst
development prospect, a locally integrated actuation system cuitsisting of servo electroni',s, servo valves.
actuators, and transducers, interfacing with a digital flight control computer over a serial bus.

1.0 INTRODUCTION

Designs of new, manned fighter aircraft have placed ever increasing demands on flight controls for
antvanced aircraft performance features. These include interaction and integration with engine controls
and with the mission management system for navigational and armament system requirements. At the same
time. a revolution in digital electronic computational and communication devices, coupled with evolutions in
actuation devices, has created opportunities to improve the performance, availability, and maintainability
of the control surface actuation function of flight control systems at lower life-cycle costs.

During the course of the technology survey involved with this study, it was noted that the majority
of the flight control tech nology- based programs being funded were in the areas of digital processing,
software, and sensor development. These activities were focused on near-term payoff for production
flight control application. A review of technology programs in the actuation area showed that effort was
oriented toward the direct drive valve. 8000 psi nonflammable fluids, and electromechanical actuation for

the all-electric airplane. Only a limited amount of research and development had been accomplished on
digital actuation system technology; therefore, this work and its results are considered to be timely.

The knowledge gap identified was an optimization of the interface between a digital computational
flight control computer and the ultimate (analog) control surface.
2.0 TECHNICAL APPROACH

In order to study the knowledge gap identified above, it was necessary to identify the major equip-
ments making up present dlay actuation systems and define the functions performed by each. These are
presented in Figure 1.

Several configurations were synthesized by progressively selecting the digital-to-analog (D/A) con-
version point in the equipment between the control processing unit and the control surface, thus increas-
ing the use of digital technology. As these configurations evolved, technical issues arose and these are
discussed in the context of each configuration description.

Finally, a configuration was selected to best describe the use of digital technology to create a fault
tolerant flight control actuation system.

3.0 CONFIGURATION SYNTITESIS, "BASELINE CONFIGURATION"

The system given as a baseline was a triplex active-n-line system employing per surface, a triple
tandem secondary actuator, three servo valves, and three servo processors. The control processors are
an analog triplex pair which are self-checked through their servo processor pairs, which also monitor the
actuator complex.

The redundanc-y management, failure detection, and toop closure computations take place in the
servo processors.

This configuration is represented by Figure 2. It is significant to note that, for each control pro-
cessor channel, there are as many servo processors as there are control surface actuators. Thus, for
12 control surfaces, there are 12 charnel A servo processors. These 12 channel A servo processors are

physically grouped together In the same enclosure with the channel A control processor. The resulting
three enclosures (channels A, B and C) may be physically grouped together or dispersed within the
avionic bay.f

Since the servo processors Are packaged with the control processor in the same electronic enclosure
and share the same power supply, the interwiring between them can be handled by mother board con-

an aircraft Alth 12 control surfaces.

netins ThsI1nItronc~ndniyo 0cnetosprsropoesro 2 e hne o

N~ I R kR ER

I SI, R i S III SURFACE

(Al THE C:IN I IL 'H. I -1 l ,NE ~ H I f (IONTROL So REACE POSITION COMMAND SIGNALS

18) TE IN TEfAt uALLUES INEFIHMAT IONRE TEiN THE CONTROL PROCESSOR ANO THE SERVO PROCESSOR.

' HE SEVO PT 550,i[14 MAY P'EP! SEE SOME OH UIt OE THE El ECTRICAI FUNCTIONS OF SERVO
AMPLIFICATIONI EAI IRE OTITION SERVn O 0SCLOSURE REDUNDANCY MANAGEMENT. AND
E LECT R ICAI ANDU HVOAAUk 1L PIEC O NTROL

(0) THIStNIE REACE CAHWES COMMONIATIONS BETWREEN THE SERVO PROCESSOR AND THE SERVO ACTUJATOR

Eil THE SERVO ACTUATOR COMPLEX CONSISTS OF THE VARIOUS ACTUATOR COMPONENTS INCLUDING rHE
ELECTRO HYDRAULIC SERVO VALVE, HYDRAULIC AMPLIFIERS. POWER COLINDER IRAMT. POSITION AND
PR ESSURE TRANSDUCERS HYOROMECHANICAI. FAILURE DETECTION ELEMENTS AND HYDRAULIC
POWER CONTROL DEV ICES

FIGURE 7. ACTUATION SYSTEM ELEMENTS

There ar'e also0 48 interconnection wires between each actuator complex and the computer complex.
F-or nnC aircraft having 12 flight control surfaces, thi!s represents 576 interconnections of aircraft Group A
wiring.

3.1 CONFIGURATION 1, "DIGITAL CONTROL PROCESSOR"

Ch~anging the control processors to difrital from analog allows the use of a digital parallel bus
between the control processors E-nd the servo processors within thle combined housing. Digital-to-analog
(D/A) converters are ;,dded to the servo processors as welt as a notch filter to smooth out the control

processor's sampling rate. The D/A conversion is in the servo processors.

A performance issue, first observable in Configuration I but of concern in all digital processor
configurntions. is the effect of the waveform emanating from the digital control processor on the
elect ro-h ydraulic servo valve. As this discussion will show, these effects were countered by the use of

notch filter tuned to the sampling frequency . However, the notch filter introdtuces a gain change and
phase lag which are a strong function of the sampling rate selected.

AVIONICS BAY LOCATION INTERMEDIATE LOCATION ACTUATOR LOCATIONI

COTO AIRCRAFT
DNOL SERVO PRAC GOUPA E HOU-ACT

PROC WRN

CP CIPN

AT-- - t -- -. --. -C

CFUE2 ASLN N COFIGRAIO I

Processor Iteration Frequency Effecta

* ~in a configuration where a digital control processor feeds digital commanda to an analog servo pro-
eesaor, the signal from a D/A will be of a staircase waveform, with ateps at the command sampling rate of
the computer. Tho rate selected for evaluation was 100 Itz (command update every 0.01 aeconds). The

*effect of this waveformn on the actuation device was evaluated using a ramp command.

9--

Figure 3 shows the response of the second stage of the servo valve and the ram to a digitized ramp
command (small amplitude steps). These steps are so small that their effect on ram position is insig-
nificant. However, the servo valve spool is almost constantly in motion at this frequency, and such a
condition may cause undue wear and fatigue of the servo valve spool and of the hydraulic lines,
producing premature f'ihlre. In addition, it may create higher hydraulic fluid leakage rates and
hydraulic fluid heating.

The transfer function characteristics of the servo amplifier, servo valve, actuator, linear variable
differential transducer ILVDT), and demodulator all contribute to the effect. The digital command signal
is held constant for one sample period, but the linear feedback signal continues to change. Therefore,
the resultant error summation is correct only at the instant of command update, developing a sawtooth
waveform. The error waveform, as shown in Figure 3, will pulse the servo valve at the system digital
sampling rate.

20 0 030 - O0

SERVOVALVE RESPONSE

0 024 - 80

E , -t 1 0

M >~<

-- FEEBACK

.RAM RESPONSE

00.04 0.08 0.12 a 16 020

i TIME - SECONDS

FIGURE 3. EFFECTS OF 100 Hz SAMPLE RATE ON UNFILTERED RAMP INPUT

A notch filter may be used to alleviate this problem. Its transfer lunction is:
ein S

2

-here 12= 2 7f 100
oe.ut $2

+ 4
w
)2 + ¢ 2

The effect of this filter for a ramp command is shown in Figure 4, which indicates that the filter is
effective in reducing the servo valve spool response to the sampling frequency. The ram response is the
same as before.

Since serial data bus capacity is directly related to computer sampling frequency, a study was made
for two other sampling rates (40 and 10 Hz). Results showed that hydraulic servo valve and actuator
reaction was excessive without a filter, and a notch filter solved the problem but created excessive phase

lag.

Hlowever, another solution is to sum the feedback and command signal In a digital format by con- .. .

verting the analog feedback signal or employing a digital feedback transducer. The digital summation
results in an error signsn waveform as depicted in hgr 5.

3.2 CONFIGURATION It, 'SERIAL DATA B2S"

This configuration, Figure 6, 4s similar to Configuration I except that the servo processors are
flocated in temperature- controlled intermediate stations between the avionics bay and the actuators. This

• ., -results In three enclosures each containing 12 servo processors. Each servo processor enclosure has its
own power supply which supplies all servo processors within the enclosure

The control procesor-servo processor link is now a serial bus between the control processor and

' servo processor enclosures and requires a bus controller/ tran smit ter- receiver (BC/TR) at the control pro-
cessor and a transmitter-receiver (TR) at the" servo processor. Parallel bus data distribution Is usedwithin servo processor enclosures. Connections from servo processors to actuator (group A - 576 wires)
are the same as in Configuration 1, although shorter due to the servo processor locations.

lag.

-- Mo

Hoeeaohrslto st u h edakadcmadsga nadgtlfra ycn
verting""" the anlo fedbc sl'm '' iga or emlyn a iia edaktasucr h iia umto

1'1

8-4

0010 00

i100

11

-~ ~ 06SEIOVOVALVE RESPONSE

DIGITIZED COMMAND

RAM RESPONSE

001) 4

040 000, 2 00

0 o0

0 004 008 0,12 0 16 020

TIME -SECONDS

FIGURE 4. EFFECTS OF 100 Hz SAMPLE RATE INPUT WITH NOTCH FILTER

0 030 20 1 0 10

0,9 9 SERVOVAIVE RESPONSE

0 025

15 ERROR SIGNAL
~0.7

0020

c; 06 - 6

0 4 - 4

am o
0 3 - 3

0 5

02 - 2

0~ 10 -@ ...

[} I I

0 002 004 006 008 010 0 12 014 0 16 018 020

TIME SECONDS

FIGURE 5. EFFECTS OF DIGITAL SUMMATION 2

4

! A

AVIONICS aAY LOCATION INTERMEDIATE LOCATION I AcTraoOR LOCATION

f A Q P l

T< A

I, All

FIGURE 6. CONFIGURATION II

The issue requiring analysis as a result of the relocation of the servo processor is the protocol and
percent utilization of the MIT,-STD-1553B bus.

Serial Bus Traffic/Functional Partitioning

in the context of Configuration 1i ard those configurations vet to be discussed, the serial data bus
requires analysis, particularly as it relates to the adequacy of the MIT -STD-1553B bus. This Pralysis
first describes the ground rules for the application of the NIIL-STD-1553B bus. To assess the ripplicahil-
itv of the MIL-STD-1553Pl serial bus to the control processor-serial processor interface, the following
assumptions were made:

(1) The serial bus is functionally dedicated to the control processor-servo processor interface.

(2) An autonomous bus controller will be utilized that treats the control processor and each servo
processor as a remote terminal.

(3) All servo processors require a 100 Hz update frequency.

Data transfer between terminals is directed by a bus controller. Transfer is initiated Uy two com-
mands which select sending and receiving terminals. The receive and transmit commands include the
addresses of the terminal to receive the transmission and that of the terminal which will transmit. The
status words (from each) are used to verify the action being performed.

MII-STD-1553B Format Overhead. The overhead for each transmission, 108 hisec, is calculated
based on Figure 7. It shows that the equivalent of 5.4 words (108 . 20) must be sent with each trans-
mission on the bus to define which elements will transmit and receive and to verify the transmission of
the data.

RECEIVE
COMMAND STATUS WORD

(FROM TRANSMITTING TERMINAL)

DATA WORDS
STATUS

TRANSMIT WORD
COMMAND (RECEIVING

(FROM CONTROLLER) TERMINAL)

* INDICATES RESPONSE TIME ALLOWANCE
* INDICATES MESSAGE GAP ALLOWANCE

FORMAT OVERHEAD FOR ONE DATA TRANSMISSION WORDS TIME pSEC

BUS CONTROLLER (BC) ISSUES RECEIVE COMMAND 1 0 20

BUS CONTROLLER ISSUES TRANSMIT COMMAND 1 0 20

MAXIMUM DELAY 12

TRANSMITTING TERMINAL ISSUESSTATUS TO BC 1 O 20" I
MAXIMUM DELAY AFTER DATA TRANSMISSION ("1 10 12

RECEIVE TERMINAL SENDS STATUS TO BC I a 20

;- DELAY BEFORE NEXT TRANSMISSION CYCLE I
)

4

TOTAL NON-DATA TIME IN EACH TRANSMISSION 108

I FIGURE 7. REMOTE TERMINAL TO REMOTE TERMINAL TRANSFER

A.-

.r - -- , - - .. I !I - ..

s--1

Percent of Bus Capacity Used - We have specified the sampling frequency of the control processor
to be 00 tz (1000 V second period). The 1553B format has a maximum allowance of 32 data words per
transmission. The number of transmissions possible is then based on the overhead plus the numuer of
data words. We have previously developed the overhead (108p sec) for one data transmission (in either
direction), and from MIL-STD-1553B we know the length of one word (2 psec).

The percent usage of the bus (which should not exceed 70 percent) can be calculated as follows:

Percent Bus Utilization = overhead time + data word time
time allotted

= (# transmissions x 108,sec) *(5 data words x 20psee)(1) x 100 Eq.,1O,000 psec xI0(ql

Transmissions per sample data period required for Configuration 11, assuming that redundancy

management and loop closure are performed in the servo p.'ocessor, are as follows:

Transmissions Data Words

1 (CP -SP) of: I - CP fail-status
12 - position commands

1 (SP -CP) of: 2 - SP fail status

2 15

Using equation (1) shows:

% Bus Utilization = (2 x 108) + (15 x
2

0) x 100 = 5%10,000

Since only one update cycle is required, the bus has almost 14 times the capacity required
(70 percent being the upper limit).

A calculation was made to evaluate the data bus load if a function, such as redundancy manage-
ment, were performed in the control processor instead of in the servo processor. This would require
sending all required data to the control processor. Since a given transmission is limited to 32 words, the
redundancy management data words are split up into four separate transmissions.

Transmissions Data Words

1 (CP - SP) of: 1 - CP fail-status

12 - position commands

4 (SP -CP) of: 128 - redundancy mgmt. inputs

5 141

Using equation (1) shows:

% Bus Utilization = (5 x 108) + (141 x 20) =10,000 x 0 =39

This calculation shows that the data bus wo-ild accommodate this data traffic. However, this illus-
tration bears out the benefits of proper functional distribution since the data bus utilization increased
from 5% to 34%.

In the discussion of the Digital Fault-Tolerant Actuaticr System (Sectien 4.0) it will be seen that
the MIL-STD-1553 bus protocol cannot handle the bus traffic except in a bro,:.jcast mode. This suggests
that this protocol is inadequate for control loop applications where there is a low ratio of data words to
overhead.

3.3 CONFIGURATION Ill, "ACTUATOR INTEGRATED EIECTRIONICS"

This configuration (Figure 8) is representative of a physically ditributed system in which the
servo processors are located in the immediate environment of each actuator and are termed "smart
actuators." It should also be noted that, contrary to previous configurations where the servo processors
were collected in three groups of 12, they are now collo(ted in 12 groups of three.

Each servo processor has its own dedicated power supply and monitors. The servo processor to
actuator multiwlre interface is now internal to the integrated package, or very short if separated
physically. The control processor-servo processor serial bus is now distributed to all actuator locations.

This interface differs from Configuration It in that each servo processor must have a dedicated bus
interface. The functions of the bus interface have now been slightly reduced. The "word decode and
control" function now has only the input for one control processor to control. rather titan all serve l,-
cessors of the same channel,

-. -IN | il

AD-AtI 980 FAULT TOLERANT NIWA/SOFTVMS AMITECIUE FOR
FLIGHT CRITICAL FIUICTIOUEUI AVISORY GOmP FOR
AEROSPACE RESEARCH NO OEVELOPST EUILLY.

7 NCLASSIF tED 0 L HARTfuNN ET AL. SEP 45 AIIM-LS-*43 F/O 9/2 "LU Eh~hh~

I I. II~ IH

'1311
112

lC

- i

8-7

AVIONICS RAY LOCATION I INTERMEDIATE LOCATION * ACTUATOR LOCATION

LO ATI PROL DIGITAL SERIAL Bus SIP EHSV-ACT

I CP-"

I I

S1 CP- C T 1
C

I I
I I

FIGURE 8. CONFIGURATION III

With Configuration Ill, the economy of common bus transceivers and power supplies has been lost.
However, the possibility of some single point failures that can disable one-third of all the actuator chan-
nels has also been eliminated. It was noted that a significant difference in weight appeared in Configura-
tion III where, for one channel of three servo processors plus actuator, weight decreased by 25 percent
due principally to reduction in aircraft group A wiring.

A technical issue for Configuration Ill and subsequent ones is that the actuator environment of
advanced fighter aircraft will exhibit high temperatures, thus requiring electronics capable of high
reliability at these temperatures.

Iligh Temperature Electronics

The Environment. Configuration III has physically distributed the servo processor from the control
processor enclosure to integration with the actuator. This poses a problem of either obtaining electronic
components which can withstand that temperature environment or creating a controlled environment for the
servo processor at the actuator. The latter would require a heat exchange system at each actuator
location. From an overall aircraft design viewpoint, this would add weight and complexity as well as an
accessibility problem for maintenance. A more attractive alternative would be to develop electronics
capable of surviving the uncontrolled environment. The packaging technology for a serve processor
which can withstand the vibration, shock, altitude, and contaminants (sand/dust/oil) of such an
uncontrolled environment is available today. The remaining environmental problem is temperature.

One source of heat is the valve actuator hydraulic fluid. which is heated as work is performed on
it. The valve actuator body itself may experience temperatures from -65

0
F (-540C) to +275°F (+1350C) in

a type II hydraulic system. Another source of heat comes from aerodynamic heating of stagnant compart-
ment air as a function of aircraft speed. These temperatures have been quoted (for fighter aircraft) as
between 10

0
C to 7iC for subsonic cruise conditions, 132

0
C maximum for a supersonic 10-minute dash,

and 1680C maximum for a 2-minute supersonic dash. Heat generated by the electronics itself is a third
source and this can be affected by the circuit design approach employed.

Even under these conditions of temperature it can he shown that reliability can be comparable with
present equipments housed in conditioned environments with the development of three technologies.
These technologies are: (a) high-temperature electronic component technology, (b) thermal packaging
technology, and (c) circuit design technology.

Semiconductor Development Status. Research into semiconductor components involving high temper-
atures is ongoing at several companies and government organizations. These activities can be grouped
into the following categories: (a) those being developed for relatively short-term reliability. as for
geothermal and oil drilling applications, and (b) those which are being conducted under government spon-
sorship for flight critical applications, such as the NAVAIR/NRL/GE program for application to engine
controls.

NAVAIR/NRL/General Electric Program. The GE Company's Electronic Laboratory in Syracuse, New
York, has been under contract to the Naval Research Laboratory, Code 6810 (Contract N00173-79-C-0010)
for the development of high temperature electronics to be used for engine control applications. The pro-
gram was under the sponsorship of the Naval Air Systems Command. The purpose of the program was to
develop a family of electronic components which can operate at 300

0
C for 10,000 hours, which translates

to more than 320,000 hours at 20
0

C - a probable top specification for flight control.
a- --

These components are intended for engine controls mounted on an engine in an uncontrolled, high
temperature environment. This presents a similar technical problem as mounting electronics at or on a
flight control actuator. The functional operations of the circuitry are also similar to servo driver
requirements of the flight control application.

In the first phase of the program, GE Syracuse concluded that Integrated Injection Logic (1
2

L) was

the best technology available for this application. 1 2L is a bipolar, large scale integration circuit tech-
nology shown to be capable of operation at 3006C. GE's testing has shown that the major reliability prob-
lem is the metalllzation migration into the semiconductor material at elevated temperatures. A double
metallization layer is needed for digital applications at 300

0
C operation, and the system chosen was plati-

num silicideltitanium-tungsten/gold. Platinum silicide forms stable ohmic contacts to silicon, and gold
Interfaces easily with the outside world. A thick layer of titanium-tungsten is needed to separate these
materials.

Latter phases of the program called for the design, development, and testing of a family of prod-
ucts, including a microprocessor, read-only memory (ROM). random-access memory (RAM) and possibly a

-M-.O _.
• f

7t 1
/

digital-to-analog converter. GE has predicted availability of components operating at 3000C in the 1985-86
time frame, and almost immediate availability for use at 200°C in prototype quantities.

Electronic Packaing for High Temperature. Some research in packaging technology was done in
the 1978-79 period ai lR Textron, Inc., using existing components. Hybrid techniques were employed
wherein semiconductor chips were attached to the package substrate with eutectics. reducing the thermal
path impedance between the microcircuit package and the semiconductor junction from approximately
90WC/watt to 10C/watt. This work has also been done by the GE company at their Evandale Engine
Division in applications related to the FADEC engine control program.

Circuit Design Approach. The use of appropriate switching techniques in a circuit design can
reduce the internal power dissipation of the semiconductor devices employed. Acting as saturated

switches, these devices operate predominantly in one of two modes: saturation or cutoff. The devices
operate for only small periods of time (switching transition) in the active region. It is when operation is
in the active region that the most significant junction self-heating occurs. A design approach to maximize
the use of switching techniques will generate less junction self-heating than a linear circuit approach.

Driving a conventional electrohydraulic servo valve with switching circuits (e.g., pulse width modu-
lation) is not a new concept. Expanding this design approach to include feedback transducer signal pro-
cessing and command/feedback summation (loop closure) offers a circuit design approach for servo
actuation control with potentially higher thermal environment tolerances than conventional linear concepts.

3.4 CONFIGURATION IV, "DIGITAL ACTUATOR"

This configuration is all digital except for the ram itself. It also employs a microprocessor in the
servo processor unit to perform all functions in a digital format. Feedback position and pressure
transducers are digital encoders. Digital-to-analog conversion is accomplished In the servo valve or the
actuator.

A technical issue, arising with this configuration, is the status of digital servo actuation elements,
including the servo valve, the actuator, and the position/pressure feedback devices.

Di Servo Valves. Three servo valve candidates are selected for discussion. The first is a
true digita servo valve. The remaining two are analog valves which are capable of accepting pulse type
inputs. Pulse inputs are not true digital (word form) inputs, but are considered here for completeness.

" parallel-binary servo valve
* pulse-width-modulation driven conventional electrohydraulic servo valve (EHSV)
" stepper-motor driven servo valve.

Parallel Binary Servo Valve. The servo valve in this configuration is a parallel wire, binary servo
valve (Figure 9) wtich was designed, built, and tested under United States Air Force contract
AF33(657)-8644. This valve had an 8 bit (8 coils) torque motor. While theoretically, performance should
match the linear servo valve (given required resolution steps), its complication in manufacturing and the
multiplicity of wires to drive it do not recommend it.

TORQUE MOTOR
FRAME

C.MM--N
N S NOZZLES

' P O O L E N D
R P ~ f S TR

SPRING SPORTAG

SPO

-SPOOL END

FIGURE 9. PARALLEL BINARY SERVO VALVE WITH ACTUATOR

-I Lb ,

/070

Pulse Width Modulation Standard Linear Servo Valve. Another approach is to use pulse width mod-
ulation (PWM) techniques with in conventional analog elect rohydraulic servo valve (EIISV). This concept
allows a pulse type of transmission to the EI1SV. The driver could be a voltage driver or a current
driver. The shortcoming of a voltage driver is that as the EIISV coil impedance changes with
temperature, the resultant coil current will change. This appears as an effective forward path gain
change in the loop closure path of the servo actuator.

Pulse width modulation fundamental frequencies can be set high enough with respect to EHSV
armature natural frequencies to eliminate armature or suspension fatigue. The problem inherent with this
approach is limiting the length of the wiring loop between the servo processor and the valve, since the
varying current can be a source of electromagnetic interference (EMI). This approach is best suited for
a configuration which locates the servo processor at the actuator.

Stepper-Motor Driven Servo Valve. A stepper motor could be used to drive a servo valve spool.
Stepper motors accept a continuous control pulse train and increment a predetermined amount of rotation
for each control pulse and, therefore, could be applied to an actuation device. It converts pulse signals
to exact incremental rotation, and there is no need for any feedback device such as a tachometer (rate)
or an encoder (position). If the system is driven open loop, the problems of feedback loop phase shift
and resultant instability common to servo drivers are eliminated. Proper application of a stepper motor
requires a consideration nf:

0 Distance to be traveled

* Maximum time allowed for the travel

0 Desired static (detent) accuracy

0 Desired dynamic accuracy to return to static accuracy (settling time)

* Required step resolution (combination of step size and gearing to the load)

0 Total system friction, system inertia, and the speed/torque characteristics of the stepper motor.

A stepper motor accelerates and decelerates with each control pulse even when it is rotating at a
maximum speed which causes a velocity change on its output shaft rotation at all operating speeds. Thus
a stepper motor would be unsuitable for constant velocity application.

Digital Actuator. If the definition of a digital actuator included techniques in which a digital servo
valve wa empeye ut the input signal was an actuator position command (rather than, a rate command)
then two concepts arc possible. In concept I, the valving element is the digital -to-analog converter.
The valving element has a mechanical summing point for the digital command And the actuator position.
with the difference, or error signal, determining valve opening (actuator rate). For this concept, the
actuator and mechanical feedback are analog, but with the valving element as a summing point the com-
bination satisfies the above digital actuator definition.

In concept 2, the actuator is constructed from a number of series-connected pistons with binary
related strokes. For this concept, each piston has its own valving.

Concept 1. Two approaches that satisfy concept 1 will be described briefly. The first approach
involves using a servo valve with binary digital or with pulse-width-modulated (PWiM) input to the torque
motor coils and with mechanical feedback (torque) to the torque motor armature (see Figure 101. The
binary digital servo valve could, for example, have multiple coils on a single armature with a binary rela-
tionship between the number of turns in the various coils. The PWM approach has considerable advantage
and would be a logical choice between the two. Note that the problem of actuator null shift inherent in
using the torque motor as a summing point for mechanical feedback has not been avoided by this
approach.

This concept has the servo valve as its D/A conversion element and the mechanical loop closure is
analog. Since this type incorporates mechanical feedback, a whole new group of considerations different
from those in the baseline configuration are introduced. It would, therefore, be very difficult to make
valid comparisons. This is not to say that mechanical feedback does not have merit in some applications.

The second approach to concept I is one in which a stepper motor produces a stepped input that is
summed with a rotation proportional to actuator displacement by means of a mechanical differential. The
output of the differential displaces a valve spool that controls flow to the actuator (see Figure 11). In
this figure the spline and screw work together to form a differential. This approach has the
disadvantage of requiring initialization with some type of position sensor since the output does not have
an address, In fact, it may require periodic or continual position updating because of the possibility of
lost steps.

Concet 2. Concept 2 consists of a series of actuator pistons connected end to end and having a
binary rean oetween strokes of the different pistons (see Figure 12). The stroke of the shortest pis-
ton is equal to the resolution required, and the total output is twice the stroke of the longest piston
minus the stroke of the shortest piston, Thus, five pistons stacked in series give resolution of 3.2
percent of total stroke. Separate on-off valving is required for each piston. If back and forth hunting
is to be avoided upon the Introduction of commands that require extending the long-stroke piston and
retracting several of the shorter stroke pistons, the valve flows must be carefully controlled to assure
equal traverse time of all pistons under all pressures, at all operating loads, and in both directions.
This Is not an easy task and could dictate substantial overdesign in load-carrying capability to negate the
effect of load, The electrical command is parallel binary, and since digital signals will almost surely be
sent to the location of the actuator as serial Information (because of the number of wires required for
paralleled transmission), actuator mounted electronics to do the conversion would be a necessity.

F-71APPER NOZZLE 1
SERVOVALVE TORQUE MOTOR ARMATURE

P S

P S I

MECHANICAL 1EEORACK

FIGURE 10. BINARY DIGITAL SERVO VALVE - ACTUATOR

HYDRAULIC
VALVE SPOOL

ROTATION PROPORTIONAL

TO ACTUATOR OUTPUT

STEPPER - -

MOTOR 773
INPUT

SINE SCREIN

FIGURE 11. STEPPER MOTOR INPUT

IIL EL IL 2L

FIGURE 12. DIGITAL ACTUATOR

Note also that there are a large number of sliding seals. This basic type is inherently very heavy and
complex mechanically, which alone would remove It from contention for most, if not all, aerospace
applications. A positive feature is the elimination of many sources of null drift. This approach f
exemplifies the difficulties incurred from mechanical digital-to-analog conversion at high power levels.

Digtal Transducer. A study of existing "digital" transducers to provide position and pressure
feedb as iniaested that the mechanisms are based on optics, with pattern-reading principles applied
to translate linear motion to digital electronic signals.

I o-..

The optical/digital transducers rely on their mechanical alignment, but also on the true lirlearity of
the mechanical movement. Some, because the digital scale is not referenced to zero, require initialization.
The optical connectors and optical system used require space and alignment which to date has not yielded
the same degree of compactness as existing devices.

The present position transducer (LVDT) relies on the accuracy of coil winding and the mechanical
precision of the armature to the stator. Its scale factor can be compensated for by means of the
electronics which excites and demodulates it, as long as its mechanics are linear throughout. It can be
made small for servo valve spool monitoring, or large to monitor long actuator strokes. It can %ithstand
the actuator environment.

Perhaps the biggest deficiency of the present LVDT is in the number of interconnections between it
and its excitation and demodulating electronics in the servo processor, and the wire weight required when
the servo processor is located in the avionics bay. This objection can be ameliorated when the servo
processor is located at the actuator. In addition, digital excitation and demodulation techniques have
been develh~ped to effectively "digitize" the existing LVDT devices.

4.0 A DIGITAL FAULT-TOLERANT ACTUATION SYSTEM

From the study of architectural issues, a configuration was selected which incorporates digital
technologies with the highest potential for a fault-tolerant system. It is also one which can be presently
implemented, given that a temperature environment can be created, or that electronic elements can be
provided that can withstand the environment and can be acquired at a reasonable cost.

This configuration demonstrates an approach to creating a voting plane at the servo processor/
actuator location. This is accomplished by employing a microprocessor pair in the servo processor units
and connecting all serial buses to each servo processor. The actuator elements are standard electro
hydraulic servo valves driven by analog servo drivers.

Physical Location of Elements. The three servo processor pairs associated with each actuator are
grouped at that actuator location.

Power Supply. Each servo processor has its own dedicated power supply.

Interconnections. Control processors are now linked to all servo processors via three serial buses.
Interconnections between servo processors and their actuator complexes are by means of short wire
interconnects.

Triplex Channel Mechanization. Figure 13 shows the block diagram as a multi-actuator system. As
may be seen, all servo processors have access to the serial buses of all control processors. This creates
a system which allows full system performance with any control processor pair and any actuator servo
processor. In previous configurations, for an actuator to be operational, the control processor and servo
processor in the same channel (A, B or C) had to be operational.

AVIONICS SAY LOCATION INTERMEDIATE LOCATION ACTUATOR LOCATION

(oN Ili PROC ~ DIGITAL SER IL BUS

I I

FIGURE 13. DIGITAL FAULT TOLERANT ACTUATION SYSTEM

Since each servo processor now is connected to all control processor-servo processor buses, the
failure status of servo processors for channel reconfiguration purposes is now provided via the buses,
rather than by means of dedicated wires between servo processor channels. As in previous config-
urations, the servo processor to actuator link is by means of short wire interconnects.

Serial Bus Interface

Figure 14 shows a block diagram of each servo processor's Interface to the serial buses. The
receiver from each bus feeds dual-buffered serial-to-parallel converters and dual-word detectors, a set
for each Internal microprocessor bus. Each word detector drives its associated interrupt controller and
each serial-to-parallel converter feeds its associated internal bus through a buffered register. A
transmitter for each serial bus is supplied from both internal buses with data. The transmitter control
arbitrates access to the transmitter.

Each servo processor now receives the control processor commands and the status for all three

actuator channels. The mid value of the three commands Is used as the position input command for the
actuator servo loop closure. Each servo processor's fall status is transmitted at each update cycle to

i -each control processor. This status transmission Is monitored by the other servo processor channels of
the actuator to implement reconfiguration In the event of a servo processor failure.

I:7 '1A00-

, 1 K

s-12

CHANNEL S A
A BUS

CHANNEL

WORD RANSMIT

CET BUSTR

TOTOPS

T O X C . TN T

SO~t SERIAL

13 ECOE PARALLEL 1 2IT P

FIGURE 14. BLOCK DIAGRAM - SERIAL BUS INTERFACE

All nnalog values of the ram, El-SV, and differential pressure CA P) LVDTs (in normally on-line
servo processor) are multiplexed into one analog-to-digtal converter and fed into the pP. The discreteoutput of the LVDT monitors are combined in a buffer register and also fed into the pP. With this ". .information, and the last command output from the /Pp known, the EISV model may be implemented and
the results compard to the actually sensed EHSV position in the pP. The /pP program then decides the
status to be Rent to its "driver" register, in light of the (1) model comparison, (2) serial bus fail status.
and (3) power supply fail status.

Rus Utilization. Attempts to use the receive-transmit-status word mode of MIL-STD-1553B showedlack of bus capacity, forcing use of the broadcast mode. Using the broadcast mode, transmissions per
sample data period for one bus are as follows:

Transmission Data Words

12 (CP broadcast to I - reset
each surface's SPs) ! - position command~I - CP fail status

-- - - -. o ,9lV . . .

B S
L

I-I

Transmission Data Words

12 (SP"A" broadcast lo CP A 1 - SP"A" fall status
and to all SPs)

12 (SP"B" broadcast to CP B I - SP"B" fail status
and to all SPs)

12 (CP"C" broadcast to 1 - SP"C" fail status

CP C and to all SPs)

48 (6 x 12) 72

Using equation (1) page 6

% Bus Utilization = (48 x 108) + (72 x 20) x 100 66%
(11,000)

This shows that the bus has the capacity in a broadcast mode. What is sacrificed is the verifica-
tion that transmission has been received.

There was no need to consider redundancy management at the control processor for the actuation

system in view of the use of microprocessors in the servo processors.

Servo Processor

Figure 15 shows a block diagram of the servo processor mechanization. The oscillator for LVDT
excitation, amplifier for servo loop closure, and all LVDT demodulation and monitoring are still accom-
plished with analog circuitry, Functions that are under program control of the servo processor micro-
processor (u P) are:

1. Configuration management (active on-line operation in channels where applicable)

2. All decisions involving a logical operation

3. Control of transmission and reception of all serial bus information

4. Monitoring all serial buses for a bus failure

5. Control processor command and status storage

6. Command voting and determination of servo command to be used

7. Other servo processor's status storage

8. Failure detection within the servo processor

9. Servo modeling and comparison to actual electrohydraulic servo valve (EHSV)

10. Controlling the bypass driver of the servo processor

"Design Trade-offs

Use of pPs in the Servo Processor. In previous configurations, the tasks were simple enough that
a pP's extra complexity and cost could not be justified. However, the added interface capability
required In this configuration, coupled with the requirement of command Input voting at each servo pro-
cessor, translated the required functions to a domain which would favor use of HPs over analog circuits
since much of the added requirement was either logical or mathematical.

Dual Versus Single jP in Each Servo Processor. The concept of a circuit not being able to detect
faults within itself, hence the need for parallel functions for comparison and fault detection, is applicable
to this configuration. Even though the command output that will be computed in HP-2 Is not used to
position the servo loop, all of the monitor functions should compare with HP-i's control. If a discrepancy
exists between UP-1, -2, either has the capability to bypass the actuator channel and transmit the servo
processor fail status back on the control processor serial bus.

Analog Versus 11P Functions. Since each servo processor must communicate with three serial buses
and delay times on the serial buses should be relatively small, separate word detection circuits were used
to Interrupt-drive the uPs, rather than have word detectors under program control.

Reception and storage of three control processor's commands and statuses, mathematical comparison
to control processor commands, and logical operations on status inputs and on control of binary data flow
to and from the serial bus interface are all operations that favor a iSP. Because of the large amount of
data storage, comparison and voting, a PP Is very well suited for this application. Here the program
control and storage capability of a PP Is a more effective mechanization than performing the same
functions with logic elements and analog circuitry.

The LVDT oscillator, servo loop closure, demodulation of the LVDT secondaries, and monitoring the
LVDT secondaries are still basically analog functions. Accomplishing these functions in the pP would
require a much more complex PP program with significantly higher operation speed. The added design
difficulty and minor, if any, parts count Improvement favnrs leaving these functions to be done with
analog circuitry.

-. ,,NOWj

S-14

DRIVERBY- PASS SOL

LVDT EXCITATION

..AP LVOTOM SV LD
0C 2

44 F7 M 1 F4 CH 2 .PL

LMM

OCH2

SFIGURE 15 BLOCK DIAGRAM SERVO PROCESSOR MECHANIZATION

Miultiplexed Analog-to--Digital (AID) Converters Versus Dedicated. Since any incorrect data from the
A/D co'nverters into the pP' will set conditions to disable the servo pr'ocessor chan:Iel, the fewer parts in
the AID "feedback" the more reliable, assuming approximate equality of NMTBF of the parts. Dedicated
A/Ds would require three A/Ds, while using the multiplexer would require only two integrated circuits.

Smart Actuator Concept

P Other factors which favor this configur;:tion (as well as Configuration Ill) are its potential for
providing interference-free aignals to the actuators as well as providing a "smart actuator." This
concept, by providing the actuator with a "functional completeness," yields a simpler interfac' between
control processor and the actuation complex. Electronics integrated with the actuator allows this circuitry ,._
to provide the intelligence to compensate for mechanical non-linearities, dead zones and offaets, and to
more accurately monitor performance and failures, increasing the probability of correct failure diagnosis
and minimizing field teal/depot test costs - a major problem at present, and potentially providing for
reconfiguration upon failure or battle damage. Table I describes "Advantages of a Smart Actuation
System.o"

K

0L

TABLE 1. ADVANTAGES OF A "SMART" ACTUATION SYSTEM

* SYSTEM PERFORMANCE 0 PROCUREMENT

IMPROVED PERFORMANCE - SIMPLIFIED INPUT-OUTPUT SPECIFICATION
- REDUCTION IN INTERFACE PROELEMS

-FLEXIBILITY AND MULTIMODIE CONTROL AND RECONFIGURA- -REUTOINNEFAEPBLM
- N FLEXIBIL UL E C- SIMPLIFIED ASSIGNMENT OF VENDOR RESPONSIBILITIES
TION ON FAILURE

- IMPROVED CHECKOUT AND SELF-MONITORING FOR FAILURE
ASSESSMENT AND CORRE2TION

COMPENSATION FOR DEGRADATION

* EOUIPMENT 0 MAINTENANCE, LOGISTIC SUPPORT OF ACTUATION SUBSYSTEM

- MULTITECHNOLOGY APPROACH TO PRODUCT IMPROVEMENT - AUTORIGGING OF SYSTEM

- RELIABILITY ADVANTAGES OF DIGITAL CIRCUITS - SELF CALIBRATION. SELF ADJUSTMENT OF NULLSHIFTS

a LOWPOWER CIRCUITRY - ADJUSTMENT FOR OUT-OF-TOLERANCE CONDITIONS

a ARRAY DEVELOPMENT POTENTIAL - OEPOT-LEVEL DIAGNOSTICS AT FLIGHT-LINE

- INTEGRATED ELECTRONIC FAILURE DETECTION CIRCUITS - REDUCTION IN TEST EOUIPMENT
- ORDER-OF-MAGNITUDE REDUCTION IN WIRING

- MANAGEABLE EMI, EMP CONFIGURATION

No

i#

--- - -Q~

-, . -

5.0 OVERALL FINDINGS AND CONCLUSIONS

Studies of the mechanization of the actuation system (consisting of servo processor, servo valve,
actuator devices and communication links) employing digital technologies led to conclusions in terms of
architectural issues and configurations. Figure 16 demonstrates the process of ,li tizing the actuation
system equipment elements. As this process progressed, architectural issues were analyzed and eval-
uated. Figure 17 presents a summary of these issues for present da, and for futurt digital technolo.-
systems.

Physical Partitioning. Physical differences between configurations can be noted in Figure I and
Table .Tesie consist of: (1) replacing group A aircraft wiring by digital serial buses, thus saving up
to 450 pounds of weight, and (2) packaging servo processors in groups of 3 instead of 12. thus reor-
ganizing digital serial bus routing to all actuator locations and requiring a separate bus TIR unit and
power supply for each servo)rocessor.

Serial Data Bus Format, Protocol and Application. Table 3 shows a comparison among configurntions
of the percentage of bus utilization for condition (a) where redundancy management i" performed in the
servo processor or (b) where it is performed in the control processor. ihe MIL-STD-!5',B serial data
bis has limitations for control loop applications. (I) Its protocol requires high overhead-to-data word
ratios (approximately 1:1) creating high utilization rates. For the selected Fault-Tolerant System, it was
necessary to use the broadcast mode, thus losing its checking function. (2) Hardware is too complex.
creating volume and temperature problems for remotely located servo processor applications. A revised
t'lll-STD serial data bus for control applications is recommended.

Functional rrtition!n. It was found that the percent of bus utilization increased dramatically
when the redundancy management function for the servo processor/actuator was performed in the control
processor.

Advanced fighter aircraft require the !mplementatton of additional alg-rith-is for flight control and a
high degree of integration of flight control and "nigine covtrcls. This vehicie management function for
the flight control computer and its interaction Yitn the mission management cor puter ca.n be fscilitated if
redundancy management and loop-closure functions can be performed in distril-uted ,quipments.

High Temperature Electronics. This technology involves three develop~ments, all of which are now

developed but in a non-production stat-s: (1) 1
2

L semiconductor technology capable of 10
9

system fail-
ure rates of 200*C, (2) high temperatur- packaging employing eutectically mounted semicond.ictor chips in
a hybrid microelectrontcs packagir,g concept, and (3) digital switching circuit design conep .3 to avoid
internal heat generation.

Digita[Servo Actuation Elements. In general, it wa4 found that ilipital-lo-analog conversions ie
most efficiently performed (weight, volume, cost) at the lowest possille t,.we" (preferiabl, st.s,.l level)
and simplest mechanical levels.

Redundancy Architecture. The active on-line system analyzed in these configulration lends itself to
a concept of in-line tailure detection throughout. Distributed servo processors are able to effectively
monitor the failure status of the control processor, the interconnecting data bus, and the servo actuator
complex. Failure and reconfiguration communications among channels can be readily handled by servo
processors. Differences in redundancy and in battle damage reconfiguration potential show up in the
configuration of power supplied, data buses, serial bus transmitter-receivers, and physical dispersion of
equipment.

CONFIGURATION SELECTION. Configurations which combine servo processors with the actuator
create the highest potential for future development simplicity for fighter aircraft trn achieve reliabilities

equiring the fewest number of channels and highest reconfiguration potential. These combinations of
servo processors and actuators are termed "smart actuators" and a summary of their advantages was
presented In Table 1.

The Digital Fault-Tolerant System, with a voting plane at the servo processors, has the highest
potential for fault-tolerance and reconfiguration, but requires the most hardware and the highest serial
bus traffic.

ACKNOWLEDGMENT

This work is a consolidation of a report AFWAL-83-3041 written by the author when employed at
HR Textron and funded under Contract F33615-80-C-3623, program element 62201F, project 2403, work
unit 24030275. Mr. Duane Rubertus was contract monitor for the Air Force Wright Aeronautical
Laboratories.

-T

[2-,-

fAl El1 0' ElA

PROLESSOR PTRFC INTERA COMPLEX

BOAR 000ATED ANALOG
tUBE ANALO -5 AA~ ELECTROHVORAULIC

NElOS GROUP A)! SERVOVALVE

INTERNAL ~ ANALOG-~.
CONFIG I CIGITAI 0101AL A ... 4O ANDNOCHj ' -

PARALLEL BUS FITE ADE

DIGTL ERIA L BUSNE AC I

CONFIG 1111 I$- u 'NTERNAL

4.7~ 1 0 NEAGITALVAL E
CONFJD IV -- :MCPRESSOR 00AD .4-IGITA -IA

< -<7ADDED PARAIL E LBUS TRANSDUCERS

LOCATIONS

SAVIONICS BAY -TEMPERATURE CONTROLLED

mSEPARATE BAY -TEMPERATURE CONTROLLED

______ACTUATOR - NOT TEMPERATURE CONTROLLED

ORDOUP A WIRING IS AIRCRAFT WIRINO BETWEEN LRUs

FIGURE 16. PROGRESSIVE DIGITAL CONVERSION OF ELEMENTS A-E

ACTUATION SYSTEM CONFIGURATIONS

-------------------- ---- -----------------------------------

ARCHITECTURAL PHYSICAL INTER- FNTOA EPRTR EV- RDNAC

CONNECTION PARNTTINING ENVIRONMENT ACTUIATON ARCECTURENC
ISSUES PARTITIONING TECHNOLOGY RI NN ENIOM T EL ETS ACTCUE

-- ---- -------- --------

PRESENT-DAY AIRCRAFT RS-HNE

Srm f CENTRALIZED +GROUP A CENTRALIZED *CONTROLLED +ANALOG MONITORING
svsrC~fSWIRING

-- -- - -- -- -- ---

DIGITAL TOSERIAL BUS. IN-LINE CHANNELTECHNOLOGY DISTRIBUTED #CONT.ROL _S DISTRIBUTED *UNCON- DIGITAL MNTRN
SSESORIENTED TR0LLED MNTRN

FIGURE 17. ARCHITECTURAL ISSUES

4004

AVIONICS BAY LOCATION INTERMEDIATE LOCATION I ACTUATOR LOCATION

CONTROL SERVO PROC AIROUPA EHST-ACT1
PRCWIRING

AA 1

S2 P*BS

INEN L A 2 S12I

I CONFIGURATION I
AIRCRAFT

CONTROLPROC SEV PRO GROIJPA IEHSV-ACT

DIGITAL IWIRING
SERIAL IAl

A TR

IN1ERNALPSC
AALLELI

F CONFIGUIRATION 11

DIGITAL SERIAL RUG OP-EHST-ACT

_____________________________ ICONFIGURATION III, IV

IDIGITAL SERIAL RUG
BROADCAST MOD11C-"lTR_

A' TR

Cph-C _ -

TABLE 2. CONFIGURATION PHYSICAL COMPARISONS

CONTROL PROCESSORS CP-SP INTERCON SERVO PROCESSORS SP-ACT INTERCON

3 ENCLOSURES 120 MOTHERBOARD INTER- 36 SPS 576 AIRCRAFT GROUP A
BASELINE 3 CPS CONNECTIONS (IN CP ENCLOSURES) WIRES FOR A 12 SURFACE

3 POWER SUPPLIES ILARGE) IN CP ENCLOSURE) SYSTEM

3 PARALLEL DIGITAL BUSES ADO NOTCH FILTERS &

CONFIG I SAME AS BASELINE (IN CP ENCLOSURE) DIA CONVERTORS TO SAME AS BASELINE

36 SPS

(IN CP ENCLOSURE)

3 ENCLOSURES 3 SERIAL DIGITAL BUSES 3 ENCLOSURES SAME AS BASELINE
CONFIG I) 3 CP'S 36 SP'S (REDUCED LENGTH OF

3 POWER SUPPLIES (SMALL) 3 POWER SUPPLIES (LARGE) GROUP A AIRCRAFT

3 BUS CONTROLLER/TR UNITS 3 PARALLEL BUS SYSTEMS WIRING)
3 TR UNITS

12 ENCLOSURES SHORT HARNESS WIRING,
CONFIG SAME AS) I 3 SERIAL DIGITAL BUSES 36 SPS SAME NUMBER AS BASE-
III AND IV 36 POWER SUPPLIES (SMALL) LINE

36 TR UNITS (SAVES 450 LBS OF

GROUP A AIRCRAFT
WIRING)

DIGITAL 12 ENCLOSURES
FAULT-TOL SAME ASI I 3 SERIAL DIGITAL BUSES 36 SPS SAME AS III
CONFIG 36 POWER SUPPLIES (SMALL)

IOB TR UNITS

TABLE 3. SERIAL BUS UTILIZATION

CPSP P-CP TOTAL NO. BUS

NO. DATA WORDS NO. DATA WORDS NO. NO. UTIL (%)

CONFIG TRANS NO. CONTENT TRANS NO. CONTENT TRANS DATAWORDS TRANSWDSTOTAL

A II 1 1 CP FAIL STATUS 1 2 SP FAIL STATUS 2 15 2.2+3=5%

t 12 POSITION CMDS

B II I 1 CP FAIL STATUS 4 128 RM INPUTS 5 141 5.4 + 2B.2 = 34%

12 POSITION CMOS

A III AND IV 12 12 CP FAIL STATUS 12 12 SP FAIL STATUS 24 36 25.9 - 7.2 33%

12 POSITION CMDS

B III AND IV 12 12 CP FAIL STATUS 12 12 SP FAIL STATUS 24 132 25.9 + 26.4 - 52%

12 POSITION CMDS 96 RM INPUTS

12 12 RESET 12 SP"A" 12 SP"A" FAIL STATUS 48 72 5.8 + 14.4 = 66%

AX DIGITAL
FAULT-TOL 12 POSITION CMD 12 SF"B" 12 SP"B" FAIL STATUS
CONFIG

12 CP FAIL STATUS 12 SP"C" 12 SP"C" FAIL STATUS

A - CONFIGURATION MANAGEMENT IN SERVO PROCESSOR

B - CONFIGURATION MANAGEMENT IN CONTROL PROCESSOR
X - REQUIRES USE OF BROADCAST MODE

-- low

7r . r:

600 RilIg way Prkwiy

TI.'

qi' .. i pr," th rb- "if w.- i gn v il it io)f fI, Ilt tol er'rot. rAiit '-

Fni te t ite mach iflri are Iiied to formally ,ipecify flignt control finictions. Th.?i ippli' i
n,; I nt- Io.,rirjio'-<r irig pra n tu'e in fl ight curt,l. Howei"r, it i3 bel ixrv,.d th-. th -ir sye5 <i

and forma I v3e t o form the str iet ire of the system speerfilqtion willI be an ii I n tio design p'C-roe
tid in. tn. i.a l-rIoriii it"rn' to !1I ipp1li-t* !on to f1light ~tO

Ton- 3econd portion 'of this p.,per in concorned with tee problEm ot f tn iI
Models based on fa ilt-treeg in the early definition phase of estimating reliability are 13el to
design tlstis to be performed at the 1iron. bird" state (hardware in-the-loop) . Crnfiljer.,e in thie
overali system reliability is derived from a combination of component life-et and aaref ii
evil ratIon of the fa its that. the systetm is designed to aci;Omnodite witho it loss of -otrol.

1.0 !NTOUCTlION

The design of a farttl~atflight crit,?Qal system is bas'd on three jnpO'-tant a-.ctos

o All of the algorithms of the system are correctly des igned anid will be correctly
Implemented by the software and hardware of the systems.

0 All possible flil ire nodes of the components are known.

o All of the posible interactions bttween the system and its environment have beo n

foreseen.

These tao noi.tions separate an abstract corncept from ptlysical reality. -There is no way that all
possible fail re modes of a complex system can be identified. Nor can all possible interactions of
the system with its environment be modeled. Only years of exper'iecne with actia ny3atons can
instill confidence that the abstraction comes close to physical reality.

A distinction is often made between verification and validation. Verification applies to softwire,
it is the process of demonstrating that software is technically correct by showing that each
software firiction performs as specified and the technical aspects of inpitS, ortplit. anid the
passage of data between fijnctions are correct. It mist be shown that the data that def ines the
state of the finction are not corri;pted by any side effect SO that the data sirive to the
S-ibseqlient cycles of the calcilations. Validation applies to the system, it is the process of
showing that the system performs according to Its reqitirements and reacts favorable in all
sitiatlons.

The importance of verification grows proportionatoly with the trend to delegate larger percentages - -

of the system fi)nctiOnS to software. As the software becomes more complex or more critical.
verification mist become more systematic and formal and Mist estahish complote confidence in the
performance of the software.
The problem of system validation is divided into two parts:

o Show that the system does Indeed behave as o-ar mathematical model is form.ilated for all
normal f-inctions of the system and for all classes Of hypothesized fill-ires,

0 Estimate how closely the mathematical model abstracts reality

Formal validations address the first point. To be able to do this with any certainty, one mist

have a precise specification of the normal finctions that the system mlist perform and a precise
description of the classes of falire events to which the system mnist respond. tny lack of
precision In these specifications will resilt In a lack of Certainty and confidence in the
validation. In order togcarry o;1t a meaningfuil validation, A systematic methodology is req.iired
for specifying, designing, and implementIng the flight control system. S-ich methodology helps to
make the validation process clear throigti ii design and deveiopment and test stages.

**--- -w -~~ - .JT T 4

9-2

litho gh t vn rifiaation and val idation nrthodol.)gy proves many f inctions, there are seve:ral th t it
cannot prove. It is not possible to predict the response of a compiter to all possible failures of
its hard r-. The Tost elaborate fail tre-and-vffects analysis can only enimerate the moost prubble
rail ire modes. Becaaise there is i vast nuimber of states in which the comp iter may be when a
fa ii1are occa rs, the o itome can only be estimated. The system mist be cunfigired so that there are
no failares that can pait the airplane in jeopardy. Proofs can only show that the system is safe
agtinst Qlosuvs of hypothetical mathematical fall ires, only experience can show that physical
failares are covered.

Thu remainder of thi. pupar addresses two related areas. Section 2 disc isoes formal nethods for
specifying system fanctions and presents three flight control examples. Section 3 presents some
ilras for validating system retiabilty; in particular for highly red lnant systems wh-re life-2yle
tests are too time consiaming.

2.0 F!,RMAL I 'CUTDS FUR SPC Ik'Y ING SYST M FUNCTIONS

Formal l id t ion is preli. ited 1pon i me thodology for specifying the f ricticns of th,; system.
!,igning to capture these specifications, and implementing the resaltant design. A methodolgoy

ist provide 3ifficient precision in order to carry oit a formal v,,lidation. It sho alI provide
gaidance for testing to validate the total integrated system. Moreover, it serves to keep clear
toe Importance of validation throaghoat the design process.

The view of the NASA Working Croip on Valitation Methods for Fa lt-Tolernt Avionics and Control
Systems (Ref. I) sapport this reqiirvment.

"In order ta make a rigorois case that a fazilt-tolerant system
is valid embodiment of its reqiirements, a systematic approach
is reqaired that is closely tied to the design process."

The terms "reqalrements" and "specifications" are often not rigorosly defined. "Requlirements"
generally mean the informal statements aboit the fNnctions and performance of a system. These are
prepared by the c.astomer and may not be precise or complete. The specifications, or reqlairements

specification, are the documents that try to capture the req-tiremens in a more formal manner.
These mist be as complete and precise as needed to ensure the siccess of a project. Indeed, maly
errors are made in obtaining the correct description of what a system is supposed to do. The final
validation of a system retairns to these secifac.ttons.

In converting from req;uirements to specifications, there are varying degrees of formality. These
range from formal languages like SRI's SPECIAL (ref. 2) to docatments prepared according to varlois
military standards (ref. 3). The following section examines one method of specifying flight
control fanctions that Is attractive.

2.1 Finctional Descriptions

Any Information or signal processing system may be thoiight to be made lip of two flows--one is the
information or data being procesed by the system, the other Is the sequence of control actions that
manipulates the data (ref. 4).

Petri nets (ref. 5) and LOGOS (ref. 6 and 7) are two graphical techniqes for describing flows. A

Petri net is a directed, bipartite graph of alternating vertices called places and transitions. It
provides an abs5tract model of information and control flows. The major applications of Petri nets

have been in systems In which some of the events occuir concurrently, bat with constraints on the
concarrence, predecence, or frequency of the events. The graphical techniqiie LOGOS portrays these
two flows in parallel graphs. The control graph initiates, sequences, and synchronizes the data
operations on the data graph. LOGOS has been ised to analyze very complicated systems, inc: ding
the Air Force DAIS architect,Are (ref. 8).

In many systems the struactare for prodacing one of the flows is more complicated or fandamental to

the system than the other. For example, in handling hige quantities of data, the organization of
the data Is central in designing efficient algorithms. In this case that the data flow dominates
the design considerations. For flight controls, the calc alations on the data are not complicated,

but the structire for controlling the compotations is. Control flow dominates. Thuts, the design
will be concerned chiefly with the control strictire; the data flow will follow along naturally.

A finite-state machine is the simplest computing strnicture. At the next level are the puish-down
automata, which have stack memories. The most general theoretical compitling structlire Is the
Tiring machine. Finite-state machines ise two expressions, called states and events. The states
correspond to the sequiential circilts familiar to electronics engineer. Events represent an inpt
to the control atructare, signalling some important point of activity in its environment. This
description appears to be appropriate for flight control software.

The advantage of the finite-state machine representation is that it is precise and may be easily
reviewed by control engineers for completeness. It may be ised to describe system-level f;inctions;
It is not limited only to hardware or software. The states mist be clearly identified and the
events ca-ising transitions mast be defined. This provides a strictare that may be completely
tested.

Fortunately, all flight control finctions are either straight-line calculations reqliring no past
data, or calculations requiiring only a fixed, finite set of past data. Hence, the latter functlons
may be represented as finite-state machines.

r - i

7!

v-3

A general finite-stItt maochine is diagrammed in Fig-ire 1. When inp Its are received, ouitpuits are

cale Ilated as fne tions of the carrent valuies of the state variables and the inplits. Then the
machine switches to a new state, again as a function of the current state and the input
qantities. It is often isefil to produce ouitpits associated with these state transitions; for
example, a warning to the pilot ipon aitomatic change of mode due to loss of an inpit signal.

These representations were fouind to be very natutral for mode switching, signal selection,

synchronization, and failire management.

START CALCULATION
OR OF NEW STATE

RESET STATE TRANSITIONS

INPUTS :OF OUTPUTS
EVENTS ANS OUTPUTS

FlaUE I - A finite-state machine.

Finite-state machines are represeented in two different ways--as a directed graph or a table. The

directed graph approach is more Intulitive because it is a picture. As the n;imber of states,
events, and state transitions grows, this advantage is effectively negated by the complexity of the

diagrams. States are represented in Ihe diagram as circles; legal state transitions are displayed
as directed arrows connecting one state with another. The event that triggers a partic;lar state

transition is labeled on the arrow. The diagrams are interpreted in the following way. At any

time, the finite-state machine Is in a c-irrent state. When an event is detected and received, the

machine will make the state change indicated by the ouitgoing arrow labeled with that event. For a
deterministic machine there can be at most one sujch arrow. When no sch labeled arrow exists for

the crrent state, this represents an error, and the machine will attempt to recover. The most

simple recc,.:ery action is to Ignore the event. The action sequience performed by the machine while

changing stste is generally not inclided in the diagram.

The alternative representation Is to describe the state transitions with a table or matrix. The
entries in the matrix contain the nmber of the new state and an ordered list of actions to be

performed to effect a change in state (possibly nill). Blank entries are Illegal state transitions

and cojtid contain some code to assist recovery.

As the naimber of states and events grows larger, there is a need to partition the state machine so
that each part is more manageable. To increase the clarity of the control stricture, this

partition shoald be done based on logical properties, and not In an arbitrary manner.

The f;inctions for flight control fall into categories which fit a finite state machine description:

(1) The execuitive structuire (initiative, branch in the rate tree, recover from power

Interrupts, equialize integrations, maintain the dynamic filter states, annzinolate system

stat-is)

(2) Data transfers (Inpu)t, outpuit, exchange data between channels)

(3) Control mode switching and dynamlial switching within control modes

(4) Control law calculations (outer loops, inner loops, gain schedules)

(5) Synchronization (synchronize channels, time-synchronize programs for transfers, eto)

(6) Biilt-in-test finctions (preflight checks, on-line checks)

' (7) Selection from reduindant input signals

(8) Failure detection and reconfiguration

It is also necessary to show a global consistency between these fnctions, partic,larly the

buiilt-in-tests and the faLlure management fuinctions.

Some examples are presented In the following section.

..... 7

9-4

Flight ontrol Examples

: Ltion illistrates the ise of the finite state machines in specifying flight control

f inctions. Three examples are presented in the following paragraphs. The first application is

taken from the Demonstration Advanced Avionics Systems (DAAS), in expericentdl digital system fcr

general aviation flight-tested at NASA-Ames Flight Research Center. This example ise

machines t.) cevn ribe the nod logic.

The 3econd example treats interchannel comminication and cross-channel voting in a onventional,

frame synchronots, triple channel compiter system. Finite state analyses Is ised to analyze the

failt detection performance by examining the effects of various component failires.

The final example uses finite-state machines to specify the fanctions to be performed in a remote

actiation terminal. The terminal positions control sirfaces based on commands received from

red ndant compiter channels. The remote terminal performs signal selection on the incoming

commands anI management of the nydrailic valves and associated electronics.

2.2.1 Example I -- Seification of the DAAS Flight control Reqiiirements

The Demonstration Advanced Avionics System (DAAS) provided an excellent opportunity to apply

finite-state strict,ires for specification and design in an engineering environment. The system is
not oompliatvd, yet, it illistrates many of the problems in precisely specifying flight control

software.

DAAS provides the following fanctions:

D A itopilot/Flight Director

o Navigation and Flight Planning
o Flight Warning System

o Operating limits data
o Commi;nication and identification
o Engine Instrumentation
o Weight and Balance Data

o Normal and Emergency Procedural Checklists
o Weather Avoidance
o Bujilt-in self Diagnostic Tests

The states are defined by the services being provided. Six states are allowd by the system's

requirements:

0. Flight director off, yaw damper off, autopilot off

1. Flight director on. yaw damper off, autopilot off
2. Flight director off yaw damper on, autopilot off"

3. Flight director on yaw damper on, autopilot off
4. Flight director on yaw damper on, autopilot on

5. Flight director on, yaw damper on, autopilot on, control wheel steering on

In addition to the cockpit, switches there are validity signals from the sensors and from the

software monitors for the compuiter system and the pitch trim system.

All of the normal events that can affect the six system states must act thrOigh the following

switches and flags:

1. Flight director switch
2. Yaw damper paddle switch
3. Auttopilot paddle switch
4. Control wheel steering switch
5. o-around switch

6. Manual electric trim switch
7. Autopilot d;imp switch

The entries in tabel I show the number of the state to which the system will switch when the

corresponding event occurs. Most of the transitions listed in the table are trivial. For example,
if the system is in State 2 with the flight director off and the flight director switch is turned
on, the system switches to State 3, honoring the request. Some of the entries are not active; if
the yaw damper is not on, the event of switching if off cannot occur. B;ut there are a few that are
not trivial. These represent decisions for the reqaIrements. For example, with everything off in
State 0, the go-around switch or the control wheel switch will turn on the flight director. Note
that in States A or 5 with the auto-pilot on, the event of switching off the flight director is
Ignored.

Table 1 will be transformed into the requirements for software by taking into account the details
of the hardware mechanisms.

The requirements of the system's behavior at this top-level abstraction are represented precisely
and completely by the machine of Table 1. One step in the verification will be shown that the
software-plus-hardware mechanization correctly implements this machine. This table will be part of
the basis for the final validation of the system.

IKf

TABLE I SYSTEM FINITE STATE MACHINE

EVENT VI~

E.sr sof I o BI I

zz

E E
STATE

flt't dre ntor ot

raw OotJpr at,

2. a 2topltoI 0 2 3 3 2 3 0 2
tngttt dtreotor ott._

yau damper n
3.a2top Ylotott 0 3 3 3 3 7 - 40

fIght d--rotr

Sd.per on
-,otopaot on 0 3 3 S 4 3

ttlgtt dtroator .

y00 damper o_0. *.toptto'

'.ortnttgh d ~rectoro. 0 3 3 S 4 - - -
nor rot wheel at eertng 00

thlsatronatttor . 2.5 ac-d tad.-or ramp to a-td abrpt actior. Sa-ttng State Stae

The req,irermentS reflected by Table 1 mst be Capttred by a combination of hardware and software
flnctIons. In this system, the req;irement that the atitopilot can be on only if the yaw damper is
on was accomplished by mechanically linking the two switches so that one oannot be tuirned on
witho~tt the other. The reqiirement that the autopilot cannot be on withott the flight director
mu1st be enforced in the software. The switch for the flight director is momentary-contact and
alternate activations are interpreted as alternate reqiests for on and off. These considerations

lead to Table 2 which give the transitions that were implemented in the software.

Reference 9 f;urther describes the mode logic development. The compttations that drive the flight

director and autopilot are specified with two additional finite state machines which further detail
14 lateral modes (states) and 9 pitch modes (states). Use of these finite machine tables was fo;und

to be an excellent way to make all design decisions visible and prevent errors of omission. A
mitti-microcomptiter implementation based on INTEL 8086 hardware was soccessfuilly tested on a Cessna
402B aircraft at NASA/Ames Research Center.

TABLE 2 sYsTEM MACINE m SOFTARE

vi 1 Zo :i -

P&

S00 t(0 0t S00 0- 2 t O

0 1 1

filial dtrentor ottj
0aOptt~ 2 3 3 2 3. .0 -

y- daper M0
3. o-Ptt.,t f 0 3 1 3 a 2 1 4. -

fltlht dtreetar o

va d iper ot autopiot
5. otfltl dr~oarft 0 S S 4 S I -I

ahbtatranctttat utna a 3. .a$ r tal4Jfda-on ramp. ao rw S aerq tta,. Stoet t le. lo- i S ...

I~~etrol ""Il steerng

*-1

igio

'/ i

I

9-6

2.2.2 Example 2 -- Cross-channel voting and testing of interchannel commini.2attons

This section describes the interchannel comminication typical of a frame-synchronized triplex
system. The configuration is shown In Figuire 2. Each compiter oommtnicates to the others throigh
a single transmitter, which sends the same signals to receivers at each of the other compiters. It
is assmed that the sending compuiter-transmitter cannot originate two different signals. Asymmetry
in the comminications can be ca;ised only by errors in the receivers or the receiving computer.
This assumption most be Justified by a fail ire mode and effects analyses. Under different
assuimptions (reference 10), fo ir computers are needed to detect one error if the originating
computer sends different signals to the others. This Is not the case for the configuration shown
in Fig ire 2.

Assime that any one of the 12 elements in Figuire 2 prodices errors and then follow these errors
through two levels of data exchange. Only one hnit is assimed faulty. Errors are detected by a
siam check on the data transmissions and by comparisons of compiiter outp its from some active
computation. The error syndromes after the initial data exchange are listed in table 3, the final
syndromes allow a compiuter to detect errors in the foreign comp-iters or the comminications
channels, bhit cannot distinguish between errors in the computers, transmitters, or receivers.
After the second roind of data interchange, the syndromes distinguish receiver errors and
computer-transmitter errors; the local comp~iter, if okay, can determine that its transmitter is
ca-ising errors.

In the second round of communications, a compiter will receive word that indicates an error in the
left or right path, or its own transmitter. The transmission over an erroneous path is indicated

by an X in table 4.

The algorithm is simmarized in table 5. There is a jimp in the frame of reference from the initial
observation to the final analysis in table 3, If the right channel decides that its left channel is
in error, then the local channel will interpret this decision to mean that it is in error.

C BC

FIGURE 2 - Counication among synchronized channels. --

A 0

ANA)

ABLE 3 -INITIAL FAULT OBSERVATIONS

S A FA B "A01 N,.0I CA A ,It041 A ,1

CA AFFIFF OF. A 1 F TAS-,

'AFF A 0F CA IALNK NoPOBE FAIL O F LAN 0I COMI El A OF FAIL A ON Al LA IN111

ERAOR IN IT To A3A A UK FAIL A OF A OR IN COMPUTER OF OK OF OF OF NOPROBLEMF OK OFK OF OF OF NOALL1ALLOL1.

INHO IN C to A

4 ALCA FALL OF A A DR OR L.WUAFA OF OF OF OFH OF - M~F OF OF OF OF OFA 0 LFANo LLA

ERROA INI a TO A PRUFAF IV ALIA IFAlh) IF 8 111
OFC 0 A FALI OF FAIL OALCOMUTERFF A A A IA A kAOA OF FALL1 FAIL . OF O INAF, hL

A I OF ALL. A OF A FA I IA TO A IAL AF LCALOMAPUTI CIA OK ON OFK OK _FOFFFAFI FAIL OF A I OF k. 11-N I'IF

A c IF OF OF OFI OF ROBLEM ON FAIL F OF A ONFINCaLULFa c OF OF OF OF OF ILFAL -IA.

LARV IA A L0 8A
4
FR OF OF, OFK N OF N FOPOLEM FAIL OF F A OF OPRLANCOMPUTFRAA OF OF OF OF, 04 N OF l FLIFILA

EFF0R IN C LA A ERAOR LA C toU PlIALLAIL1,INA
L A, OF [ALL rALL OFL ORFIALOMPUTLFAR F N FALL OF FAIL ONLAINL.AALULFFC F A A A W. -,L A N. F

LO 1(IALL OF1 A , F N OF I"AL C F0 A AU LAF C LO 1
OF IA LONNALILLA C O ALL F AF OF IA COPUTEA C OF OF OF O AORT IIFLL

2 ALR (F OF OF OF OF PFFLFA
F OF FI ' F cOFAF L ONL LF ON LIAF.LL

A IL (M INK NO LAFFA IA K 01 Fo LROO IN INKFLA , A

A2 1 AT OK A F LK O No FRBE a GO K GA IAKNE-L A-- CA ON, 10 IF I N

TABLEL 4 IL SECO1 ATA INTFERCAHANGEIFI

O ~ ~ 0 A O LA A-
0

____OOF F OA I
4

LA ITF L.FA A U,0 L.All IFF I

Ab L A I.8A' IFO .A T UI IFN.IAAA O OFA L u L AI LFLI , IA L.A OF I IAI L A
A A G08A OCA IF UFARO 1A11 ; ,

CL A (A AF LAILA

A ~ 1 A LA F AA 6 TIF O AI IF LAFL T LGA FIT' .F FF ,,
0
AAA IL -- IN 1. 0' '.A__

Fo AF F10 ALG A

A_ _ C IT. - A F FUL" I NL U IF I" Nl~

AA O Ab 0 A LLToA 101

A IL~ ~~ ~~~ IAC I OF FAALL.ARFAA- OF AI LIII RW1F F F L FOLLIAAL
L.10A L. L. L. F 1

I FO F O F F A O F L A A l O F R I F N L A R V A I N F . A O F R A I A I A

4 1"0 I I. NINUN 1 0 Al-ILIIR
OT 6fF AL..A(I OR . ERR LLINFA F, OA FA IAAALA

0
IN Fo F,1. IAI NMTIFL L. I

L A

l A 100 10 rOA l All

1 1 10IT4A1 IF "A. (NUB I toA IT IA 111
F0 I UA OF OR FRwI LA, GAAA L . A F I LA AI F L l OLA L

IT IFI

AF IL I A 6I 1. A 1 111A

Ao ______--_I_ A IRA_ __ A _ ATUi

21 LF A A to I II A 10 I.

I8 IF OF GA IFI0ALLA 1 F
IFA U P IIlm I 1 U INI .1 A

- ~ O-

F -- tow

T,3LE 5 SUM RY OF FAILURE ANALYSIS ALGORITHM

x OK FAIL FAIL OK RIGHT OK OK OK OK
I CHANNEL I I

FAIL OK X X Ox RIGHT x RIGHT RIGHT RIGHT
CHANNEL CHANNEL

OK FAIL x OK x LEFT LEFT LEFT K LEFT
CHANNEL CHANNEL

OK x FAIL OK FAIL LEFT LOCAL OK LOCAL LOCAL
CHANNEL TRANSMITTER

OK OK OK OK OK OK LOCAL OK OK lOCAL TO
RIGHT RECEIVER

ALL THERS - LOCAL LEFT OK OK RIGHT TO
CHANNEL LEFT RECk IVER

(X OK OR FAIL) OK OK RIGHT LEFT TO

INITIAL FAULT OBSERVATION R!GHT RFC[IV[R

OK LEF x JOLEFTE10

OK~ ~ -l F At R CE IVER_

RIGH OK RIGHtT TO
X I GH O (OCA1 REFIVER I

ALL OTH RS -- l Al

(X - OK OR LEFT OR RIGHT OR IOCAL OR IRR(OR)

SECOND DATA INTERCHAN(At

2.2.3 Example 3 -- Function of the Remote Actuator Terminal

Three hydraulic cylinders are connected to sum forces to driqe an aerodynamic surface and provide

triple redindancy. Any cylinder alone can position the surface. Each cylinder has a solenoid-held
engage/bypass valve to control the stat:is of the cylinder. The position of the cylinder, the
position of the spool of the Electro-Hydraulic Servo Valve (EHSV), and the press-ire differential
icross tne cylinder are meas-ired by Linear Variable Differential Transformers (LVDTs). Each of
these feedback sensors provides a signal attesting to the validity of the LVDT output.

Redindant servo commands are serially transmitt.ed to the remote terminal from muiltiple compuiting

channels. These will carry parity bits with which the fidelity of the transmission and the status
of the sending channel may be determined.

The remote terminal mist select a siltable signal from the computer channels and position the
s;urface according to this command. The remote terminal must be operational following any two
like-component failures. The falu:ire may be in mechanical, hydraulic, or electrical components.

Hierarchy of Functions. - The top-level function may be further specified in terms of the
lower-level functions that are necessary. Figure 3 illustrates this decomposition. Design
decisions are made in constricting this decomposition.

Drive El-SV according to oomand. - One of second-level functions of the remote terminal is to

drive the EHSV of each redundant channel. This is accomplished by obtaining the input servo
command and computing the control val:ie for the E~iSV. The serial digital transmissions from
multiple computing channels must be received and Interpreted. The presence of a signal and the
validity of the transmission must be determined by the subfunctlon "validate signal
transmissions." The "select command" subfunction must choose from among the valid signals (perform
median, averaging, or some selection process). The surface position, the valve spool position, and
the differential of pressure in the cylinder are fed back and combined with the selected command as
specified by the servo system control law. This control law computation may be analog or digital.
An analog signal to drive the EHSV must be provided.

Redundancy management of servo channels. - The other second-level function of the remote
terminal is to perform the redundancy management of the servo channels. Redundancy management
ncli desa

(1) Monitoring the health of each channel,
f(2) Either engaging or bypassing a channel based on its health, and

(3) Relieving the force fight among the engaged channels.

-=Moor

9a-9

S PO SI T1 i S U R F C E

ACCORDN TO0 C MkNo

DRIVE EHSV RtOUNOAK VY MANAGEMENT I

ACCONOINi To0 commAgI9 F SERfVO CHANNELS

SERVO CON i CNoNO CHANINEL E ySYPA FORCE T

VAL~iOTE SIGNAL SELECT WTRSVO MONITOR ENS

FIbURE 3 - Hierarchy chart of specifications for the remote terminal.

The monitor channel Snbfrnction is to provide the fa Il ire detection mechanismr for tne general
operation of the servo channel. It m'v reqaire self-checking .rciitry. Proper monitoring zf any
D/A or A/I translations is reqdired. A comparison between expected vaive-spool position as
predicted by a model and the measired valve-spool position is suggested. . subfanction to
interpret LVD7 validity signals is requ)ired to determine that the feedback sensors are all
finctioning properly. Each channel m;ist be engaged or bypassed on the basis of the oitpat of the
monitor channel saibfanction. Also, a mechanism Mlst be inclided to relieve the force fight among
the force-simmed cylinders. The -ise of an active/on-line assignment with pressare differential
feedback is sIggested.

Finite-state machine description. - The redandancy management of the three servo channels can
,

be specified as a finite-state machine. The health monitoring fanction of each channel is ised to
assign an engage or bypass stat is. Each servo channel can be in one of tnree possible States:

(1) Engaged and active
(2) Engaged and on-line
(3) Bypassed

There are 33 - 27 states; the varioas transitions can be described based on changes in
engage/bypass or active/on-line statais. In order to st idy the engage/bypass frnction it Is asef I
to clister the 27 states into the eight groups shown in Figujre 4. Here transitions occr only if
the engage statas of any channel changes. States within each cl aster cover all the active/on-line
assignments, Incliiding those res ilting from logic failures (i.e., all active or all on-line). To
verify this fanction in the remote terminal, it maist be shawn that all transitions between cl isters
operate as specified. For example, the event "channel A bypassed" mast take any of the eight
states in clister I to one of the states in cliaster 2. To examine the active/on-line logic, the
states within a clister can be verified, and it mist be shown that the active/on-line logic does
not cauise transitions between clusters.

The finite-state description is iiseful beca;ise it requires the designer to consider all the
possibilities. In addition, by cluistering the states, the operation of the engage/bypass logic can
be separted from the active/on-line fnction.

iss

Iv

10S

S "S

-(I

tEA S STATES MfLER ALL tEN.....

ULITER I

.:-e .. 1 / L .- AE

" .1 A, l A'Et .LAS\ S .ATTAAS
WOO- I an&

c ETLA COALLAE

ESTATES # STATES

SIESS +" ASESESS[CA _LE

I I
I I

ESTATES /

'S . //

FISURE 4 - Vinite-etate model for the remote terinal.

/ItI

ij

. . .. P

FIGUE 4 Finte-aatemodl fo th reote ermnal

9-1i1

io VALIDATION C-' SYSTEMI RELIABILITY

In thi,5 section, the foeI i nang fran. _pe~iry lrg s3oftwarv t-: 'one of -Il I I,t Ing tne ~p'
system (hardwa!oe and software) . In flight-critIcal applications, a major ,zpe-t rf tne 5y5tet
vdIlidation inolves predicting tie rel lability of the over-all system md ic:ing r.o,, in iint
hardware elements and their associated software to identify and manage fa iltq.

Estimates of reliability are obtained diring the process of' defining tiigf4T toontrs:
architectuire. Once a candidate architect ire has been defined, a detai led analysis to cstIA-at, *.ne
probability Of loss of ontrol per nor of flight 01st be performed. Thm _- uot., .-stm1-att
mist be sinstantiated wit.) laboratory tests.

Vali:! tlon by testing oin be civided into two areas, as shown in Figl 3 e f
components anrd a ibsyatems. it is feasible to run life tests to statistics, y vilidate 7Pan tim,
n)efore fil ire (MTBl, preeictions. flaring the System test phase, It i vin to, rin life
tests . instead, integrated system (iron bird) tests are Bsed to verimy tn fa it t.cler-ince
tellievel by rem, n i,1,ry. In ese resilts, when combined with The :c1c.-c" 'coi
extripolatlon of the m:onplete systems'si reliability.

cotmo 1.1 c. ise iso-s tole mcoign df test ca3os f.or integrar.-- syatoT, fi m'n-S,'I
mach Ines ised to spec i y tne f inct ions are now ned In fhe valI ,1,t lcr testg ,,, hrse. Tne fa II t
tree moce, I s is-a to identi fy t~je vairlo is imin iO.'m nim 'Its ,t be tettd_ t
Iem'on-traite tne predlicted fa ilt tolerance.

COMPONENT DATA RELIABILITY ANALYSIS

STAISICLTESSM MODEL INTERACTIONS

OMMTODEIONBIDIESIN

ESTALISHDESIN AL EXTRPOLAIOT

MUIT EYSEMMB

FIUR 5 -The validation of an ultra-reliable system depends onFIGURE 5 indirect testing.

3.1 Design of Test Cases -- Ultra-reliability of flight-critical systems i. achieved throigh
reduindant hardware. The system imist be able to tolerate miiltiple fauilts while maintaining
indegraded flight operation. Validation of the fa~ilt-toierance and reconfiguiration feat ires is the
most critical step to the validating the reliability of the total system. These processes can best
be accomplished In an Iron bird, in which a high degree of Fidelity to the flight environment is
obtained by incluiding actual fiight hardware operating in a real-tine, closed-loop simuilation. The
fTundamental problem of fault tolerance validation is the east n inber of tent cases ahen all
possible combinations of flight conditions and muiltiple hardware faults are considered. Effective
testing requiires:

(i) A methodology ;ising both theoretical and practical perspectives to define , manageable
set of test cases.

(2) Alitorrating the testing as much a practical.

Consider the set of conceptial states shown In Fig-ire 6. It can be ISed to visuIalize possible test
cases. The uiniverse of teat possibilities Is First divided Into two areas: everything operable
and some element failed. The operative region can be described by one or more finite-state
machines. The effect of variouis failuires on the system can be described with a fa it tree. Th e
"failed element" region Inci ides faii ires for which a reconflgiiration strategy was d'-signed (i.e..
swithes oat faiied element), as well as failuires external to the system which are to)e tolerated
(i.e., loss Of a hydra-ilic pwer suipply). The management of reduindant elements car he demente;d
uising finite-state machines.

h.

CUT
SETS

FIGURE 6 - Conceptual system states.

ThrXee :res-atcned reas represent region5 where analysi c ain 1-5e0 5 ' ice tie n imber" of test
Cses:

(I System failed - These 7-es, identified as cit sts in toe fa lit tree, are Cisc 5cc? in
more detail below.

(2) inaccessible - These stites represer' combinatiors)f mdea, flight oceottions, Cr
environmnents teat are mitially exolisivpe and do not need to be test cases.

(3) Partitioned - This area represents states that can b. pa' iitnoneo 5'n teat :1
combinations do not need to be tested. ThIs co ld involve ise of hierarchies of
finite-state machines or partitionsog oil the basis cf :oetr'l 'con, etc. tee nt-,t

,ction o Itlles method for desingieg test cases basel on trhe finite-state models.

3.? Use of Failt-Tree Analysis - P sic-lly, tee fa .It tree is a top-fown OethC f deseribing th';e
failire or a system. the top e vent is the o'c inrence of total system fail ire, nodeled by loegial
nombirations of the faill ire of its os: 's5 s ibsyste s. Tis proess 1 r'-'i ted f,,r Strirt ring
the sibsystems intil reaching the lowe3t .evnt--tne fail ire of tee basic components. Bo0olean
expressions are generated that list iili .side! ninilal comhInations of component fn its leading
to total system fail;ire. Each of these failt consnatns is known as a minimal it set. The
probability of total system fall ire is samp it' - by osbining the probability of cc ireece for eth
minimal cit set.

The fa:ilt-tree analysis of" a system , in be id to Ivlop tost stit's for w, Ilat ing fa illt
tolerance. The p irpose of fa ilt-tolean-e testing is not ,c prove that the syste fails when the
fault tree predicts It will, tit '.>'her the cnvrse. Tht -irpise of t15 tenting is to ostlbishe
that the system works correctly when the fa it tree predicts it will. To estilaIsn the fo-mer, t! e
vriols fault combinations that eake Ip minimal c it s.ts ore i:-ss "- t:ot sttes, and the fail Ire
of the system is expected. This testing Woild demonstrate that the system fails at least os often
as the fault tree predicts. The important case to est,tllsh is the latter, in this case, variois
combinations of faults that do not contain cit sets are issd os test states. The system is
expected to work correctly for all of the e -ombinitions. If it dos, then this t-sting
demonstrates that it works at lea-st is often is the fa ilt tree predicts.

A "test set" is defined as a set of coiporient fill ires that contains no c it sets. Thin means that
the fauilt-tree analysis predicts the system shoild not fall in the race of fall ires contained in
any test, set. A "maximal test" set is defined is , test set that is not contained in any tent
set. This means if any component railire is added to a maximal test set, the resllting set is a
cut set. The relationships smiKng these sets of componeit fail ires are shown in Fig ire C,

One way of generating test sets is to consider the maximim components in ,och ,cit Aet that the
system can tolerate. This Is simply one component less than the total component3 in a cit set.
The nimber of such test states Is eq al to the total nimber of components in the c it set. This
approach, however, does not consider the comblnations of the elements in one cit set with the
elements of the other cat sets. The effects of these fautlt combinations are inknown if not [
tested. The maximal test sets do consider cross-combinations among several cit sets and so, in
general, contain more elements than jist "all b-t one component" from a cit set.

'I
- - ,.a. -~. - - . - - - -

./ i1

CUT SETS

ALL SETS Of
COMPONENT

FAILURES

TEST SETS

FIGURE 7 - Any combination of component failures is either a cut set

or a test set.

These definitions rllow one to state that a system works at least as often as its fa-;lt tree

predicts if it works correctly for each combination of component failuires in a test set. However

to test all the combinations in the test sets is still Impractical for large, complex systems. The
wouild like to .ise the maximal test sets for testing pirposes in a way analogous to ising minimal
clt sets for reliability analysis. This reqaires the following assumption:

If a system fails under a given set of component faults, then it will fail under the given set of

component faults plus any additional cum onent fa;lts.

This as:3;imption is necessary to avoid having to test all combinations of faults in the test sets.
With this asslmption, it suiffices to demonstrate the capablity of the system to operate Inder the

combination of fa ilts in each maximal test set.

These ideas will be made more concrete by means of the following example.

3.3 Test Set Example -- The example presented in this section is taken from an architect ire stidy

performed by a fly-by-wire flight control system for the Lockheed S-3A aircraft (ref. 11. As part

of this study, Lockheed performed a fauilt-tree analyses to examine variois architectires and

estimate the effects of eq ipment failures rates on total system reliability. The top event of the
failt tree corresponded to "loss of flight control". A total of 62 components were eval iated is

part of the fault tree analysis. Variouis failure rates were varied parameterically. A list of the
fa ilt tree elements and typical failure rate data is given in Table 6. Compiter resilts proevile

all minimal cuts sets and their associated failure probability. To improve overall system

reliability, attention shoild be focsed on components in the top-ranked sets. Tatle - lists t-e

25 most likely cit sets for one of the configuirations. This date will be ised to Ill strate the

d,!velopment of test sets.

Maximal test sets--the lirgeso sets not containing a cit set will be found for this example. - t

set nimbers 1, 2, 6, 11, 12, and 13 are independent minimal cit :sets In that each of these sets has
no elements In common with any other minimal cit set. Cuit set nimber 11 is typical. Ttrec
elements are contained in this cit let--the three redindant channels of the aileron seconda-y

actuiator (Rql, RS2, R33). If all three servos fail, the roll channel falls, resulting in loss of
aircraft control. The maximum 1imber of aileron secondary actutator channel fallts that the syst~m
can tolerate two. Since aileron secondary actuiator channels do not appear in any other minimal Cit
sets, any rnximal test set mlist contain exactly two aileron secondary actiator channel f-auts.
Similarly, each maximal test set mist contain exactly one element from cit set nimber 1 (since it
has two elements) and two elements from cit set nuimbers 2, 6, 12, and 13. These cases are llst~c

in table 8.

I -- .am --- .- . ., i , , - 111111111

I N

9-14

The remaining minimal ' it sets may be divided into two grops. One gro-ip is cat set n-imbers 4. 5,
6 and the other groip 13 nambers 7-7q, 14-25. The tao grops have no elements in common. For both
groaps, tveir coatribt I , ttaxr i l test sets is determined readily by inspection. The first
gro;ip is ill istrted in te Venn ,lag. m of Figore 5. Since each of these cit secs has the

elements I5JI 3ni IL>; a, o,;mmjr, tne %aximal test sets fall into one of three cases:

1) All tne elevr t -x ep' -L ' ire incl ide-
(2) All tre -1,men.i -x-ep, are n,'' ded

The second gr.;, tns:t'g ' '-10 rnd '14-2, has a symmetry which can be exploited.
Cit sets 7-1n ar 3. 1 .'i r of *nr, ee fjalts oit of foar air data computers. Cit sets 11-25
are iAl .omblnat.-n >f -rr ier,.1 rcs ',il.re a I two falits oat of the other three air data
compltes. As in .:, o nq ' .n v. res and one air data compater fault is also a minimal
cit set, tit is aess ' -- i-own :n table 9.) The maximal test sets mist contain
fail ares of two ir liti ,m' i..: wo orresponding sensor baises. There are six s,ach
combinations. All the mttxl',a. - iais tre prodact of the nimber of elements in each
independent minima: t oct i -: ::,t ni-ater f1 ombinations from each dependent groap of minimal

cit ses. For the -x.ample lrot.,m, '.':3 13

2 x .3)5 a an - 4

In contrast, the total n amber of co 'b:nations -_f 511 ires for the 30 components in table 9 is

230 - '0

Testing only the naximal test sets resalts In treendoan savings. Moreover, it is safficient to
gaarantee the performance of the system ander the ass amptions stated above.

CUT SET 6

CUT SET 3 GE

FIGURE 8 - There are only three groupings of the elements of
cut sets 3, 4, 5 into maximal test sets.

Considering only maximal test sets offers large savings In the number of required test states.
Additional savings are realized if the system can be partitioned Into groups on the basis of
failure modes and effects analysis, or some other such analysis. The danger here lies in omitting
some failure mode from the fault-tree analysis and then partitioning the system on the same basis.
Still fuarther redactions in the amounat of testing may be obtained by caicuiating the probability of
occurrence for each maximal test set. If this probability is sufficiently low, then the set can be
eliminated as a test state. This elimination amounts to saying that the failire combination is so P'- -

remote that the system Is allowed to fail in response to that combination.

It appears feasible to construct a computer program to generate all the maximal cut sets.
Additional research and development efforts are needed to establish this feasibility.

I

-at.

-mo

0 ~ ~ 0 0 4 1 4 4 4

m a, 10 10 004 0 0 C 0

6 u u ut . v u u

12 2 0 LI 2I ;

0 a 0.41*0 0 0.- 0 0041* 444,4 0 00

4'> C 0 4 0 0 u1 Q1 010 0 0 0 4 4 4 - 4 4 0 ' 4 1 4 1 10 '5 4 4 4 = . o 0 o 0 o 0 00 0 0 0 4
4141 gO 4 4t t t (4'. 0 0 U I

4l . a>, 0 4 .0 . LI . LI 00 .0 0 0

40 4 to 0 0 041 4 41 t to o 0 0(1 0 0

* 0 0 4 444 0 0 0 c4 4c
LI~~~~ ~~~ 41 41 4 ' 1L I L I 0 0 OL L O I 4 4 4 4 L I

41~~~ c go . c 0 4 . 4 I L L L . L 41 1 4
41~~ ~ ~~~~ 0a0-0 > 00 , . . 04 4 4 .o .o V.414.1 ~ ~ ~ ~ ~ 4 11 4111111 - - - -1 4 00 3

C ., - -o -t 0 - - - -to 0 0 0 0 uo ' o 4 1 4 4 o

0 4 0 0 U04 1 4 4 0 0 0 0 0 0 0 o 0 o 0 0

oo g 4,0((0 0 1 41 41 1 10 4 4((o 424 ,- 044 0 41 41 4

. 4 ,4 U.-.

004

O C> .4 r- 41 4 0 4(4 441 0104 .. 1 4 0, 44.4 441 40 to 1. 4 41 04 4ca

Y-16)

TABLE 7 - MINIMAL CUT SET DATA IN DESCENDING ORDER OF PROBABILITY

Cut Set Maximum Failure Components Contained Description of

Numer Probability in Set Mnemonic

1 0.99989848E-08 ENG1 ENG2 Engines

2 0.15619062E-10 CCl CC2 CC3 Computer channels

3 0. 99984777E-12 GEN IDG1 LDG2 APV generator, integrated
drive generators

4 0.99984777E-12 AAPU IDG1 IDG2 APU accumulator, integrated
drive generators

5 0.99984777E-12 APU DG1 I0G2 Axiliary porer unit, integrated
drive generators

6 0.99984777E-12 BPMP PMP2 PMPI Backup pump, pumps

7 0.75346635E-12 ACI AC2 AC3 Air data computers

B 0.75346635E-12 C4 AC2 A_3

9 0.75346635E-12 AC4 ACI AC2
1 0.75346635E-12 AC4 ACI AC2j

10 0.75346635E-12 RC4 ACi AC3)

11 0.72889996E-12 RS1 RS2 RS3 Aileron secondary actuators

12 0.72889996E-12 Ps1 PS2 PS3 Elevator secondary actuators

13 0.72889996E-12 YSi YS2 53 Rudder secondary actuators

14 0.82801821E-13 AC1 AC2 SB3 Air data computers, sensor bus

15 0.82B01821E-13 AC4 AC2 S03

16 0.82801821E-13 AC4 AC1 SB3

17 0.82801821E-13 AC4 ACI SB2

18 0.82801821E-13 S04 ACl AC2

19 0.82801621E-13 ACt 062 AC3

20 0.82801821E-13 AC4 SB2 AC3

21 0.82801821E-13 AC4 Sal AC3

22 0.:28018219-13 AC4 S01 AC2

23 0.82801821E-13 Sl AC2 AC3

24 0.82801821E-13 SB4 AC2 AC3

25 0.82801821E-13 s4 ACl AC3

TABLE 8 - MAXI14AL TEST SETS FOR THE EXAMPLE ARE CONSTRUCTED AS THE UNION OF

ONE SUBSET FROM EACH OF TEE EIGHT INDEPENDENT GROUPS

Cut Set Intersection of the Cut Sets with Maximal
Number Test Sets (tailed components)

1 (EN}. {ENG2)

2 (CC1,CC2), {CCI,CC3}, (CC2,CC3}

6 {BPsM,PP), (BPPPPMP2), {PtPlPP2}

11 (nSI,RS2}, (RSI,RS3} {RS2,RS3)

12 (PS1,PS2}, (PS1,PS3}, (PS2,PS3}

13 (YS1,YS2), {YS1,YS3), {YS2,YS3}

4,5,6 (GEN,AAPU,APUIDG1), (GEN,AAPU,APU,IDG2}, (IDG1,IDG2}

7-10,14-25 (AC1,AC2.SB1,5B2}, (AClAC3,SBl,SB3)

(ACIeAC4.SBl,SB4), (AC2,AC3,SB2,SB3)

(AC2,AC4,SB2,SB4), (AC3,AC4,SB3,SB4)

L e

REFERENCES

1. "Validation Methods for Faiilt-Tolerant Avionics and Control Systems", NASA 4orKing Crouip
Meeting No. 1, 12-14 March, 1979.

2. Roibine, 0.; and Robinson, L.: Special Reference Man~ial. Third Edition. Stanford eser~cr.
Instituide, Menlo Park, California, Report No. CSG-45, 1977.

3. Military Standard: Configuration Management Practices for Systems, Equipment, Muir.tions, vn
Computer Programs. MIL-STD-483 (USAF). Notice 2, March 21, 1979.

4. Helnger, K.L.: Specifying Software Requirements for Complex Systems: New 7echniqies ar:.
Their Applications. Proc., Specification of Reliable Software. Cambridge, Mansachisetts,
April 3-5, 1979, pp. 1-14.

5. Peterson, ..L.: Petrl Nets. ACM Compiting Suirveys, vol. 9. no. 3, September 1977, pp.
223-252.

6. Jack, L.A.; Helmerdinger W.L.; and Johnson, M.D.: Theory of Fault Tolerance. Honeywell
Systems and Re:dearoh Center, Minneapolis, Minnesota, 1974-5 Annuial Report, September 1975.

7. Han, Y.W.; and Helerdinger, W.L.: Theory of Failt Tolerance. Honeywell Systems and Research
Center, 1977 Final Report, 77SRC82, Minneapolis, Minesota, December 1977.

B. Heimerdinger, W.L.; and Fant, K.M.: A Fault Tolerant Assessment)f DAIS. Air Force Avionics

Laboratory, Wright-Patterson Air Force Base, Ohlo, AFAL-TR-79-1007, Maron 1979.

9. E.R. Rang, "The Use of Finite-State Machines for Describing and Validating Flight Control
Systems", Proceedings of NAECON '80, Vol. 1, pp. 347-353, Dayton, Ohio, May, 1980.

10. Pease, M.; Shostak, R.; and Lamport, L.: Reaching Agreement in the Presence of Fauilts. J.
ACM, vol. 27, no. 2, April 1980, pp. 228-234.

11. Hartmann, G.L. et al "Advanced Flight Control System Stady" Final Report Contract NASA-2876,
Report No. 163117, Febr.:ary 1982 (available throigh National Technical Information Service
Springfield, VA 22151)

40,

H

AGARD Lecture Series No. 143

Fault Tolerance Software/Hardware Architecture

For Flight Critical Function

This Bibliography with Abstracts has been prepared to support AGARD
Lecture Series No. 143 by the Scientific and Technical Information Branch
of the U.S. National Aeronautics and Space Administration, Washington, D.C.,
in consultation with the Lecture Series director, Mr. Gary L. Hartmann,
Honeywell, Minneapolis, Minnesota.

-_-mow

u~~~~~~I - ,I))t

c .1- D OS a - 00 oQ c0 o L
In 0- C. L I -

- I, C L V II ! V C I 3. (o *.-0 21 t
0>S V I V -..- 4 10 c0 V

> . V L VI1V 0 OLI ULSqV
C) 0 h 9 14 go C aIE (j 1C- - 0J I C -).VI.

E (0 3I~ LC V VC C m .V -V0 wI Vi V.E aL 0:
Gn 0 i C-CU-)L M) E b'o C) 0 co W- O 0 >-I CC C

4, OO a E '- 5 l0) 0I' 0 I': 0 M4 VI !. t _IC Y % . - L E
o U >C E CVI tO L) m ! 0- U1 N- wL CVI CC . Cin

'oU 0Q- 0 0 L 0 r . .WO VI .4 0) VI c DI~ LEV ~'V C 0. VI

.IV I C '3b L V CV V C 0 C V -V.)o IC cl . - -C C. .VI
L) OIv 0 a C L~~E. m L I.1 C -VZ~I'~ aI~ C U -:3 4 W 1.

'o m- w 10, 0 -CV _I 0-U~- V OD - U- E 4)0 00V
uCC. U .CC r U VI 0 0C 0- 4 - CI *

mU-O0E 0,C OEC DC20SCVI' 6- VI~'O -C--CCL -C&
CLI - C *- C. 0 do>EV CV c g, -00 v~C SC C>

CL..- 30b *L I 0 CID 01-' -- ly ECD U-I C ZV- E

O~~3 C0. OV'DC-I.C VV - UEC~ tI 4 VV CV0V0 L
LC - c x -4UL VI0' u L- -V. 0L 4 C>U1C >I M II1
C. 4.'VI 0II W L C C I .C >. 1U *VIEE..C..VIC)EWVI VIb >,VI

LOQ -D 0 CV L V0- Ln- CV _.OV'. 0-C- 0 > -41 >I- I" E CC01
.- UL 0VL 'D C U 0. C L OE I .> a C..IVIC . .-- C V !.-r 0 0 VIC Co--

o C-L VI 'Q toIC . CU V VI O- 0f CVIIV)L0 cV

VIC Z !IIN--E ZOC' .- 4VL L> 4I C- S.~b L O
L-- .I 'hII~V L C- ' V C LV C~ V VI IC 11 Cu

CCr-. '0.-CC L VI -VE LO '- VIS 'I O -. ~I O- V
0L) Ch (1 U)4 m u0-4 0c to . -E -. E V I.V E

a VI-1 0l vU) LV C VV0IE SC cO.~IlI .VI>.-I-IUIC.C-
L) a0 OL-- D. UC VI" 3 LCC S I V~ C. -V* 0I -CO >.I.- C U)

VICD0 ZC C'C~ 0 0' O I0 ICA W 0 & . UU1 C- I C CC>LC -
10O LIO C-V)-K 0 -L u C L L-. > L *V) VI CIVIC %S-C-I
LV5 -C . *--V'-- VI VV.) 0 45 0)V- ,LUV. VI-CC U

1 ~ ~ VV CCS.0 C -J-3.C Cl -- IlV 1; zCCSCVI.''1c
Q, 0 aC u 0VI- C V0EV E 4- - 3 0CL 1 aC ;~ 1 I > I L

;- NCO IC 'VVIC C 4-VO.> 1VIO S '~ C - Q) . -'CCECL

- r z -ic t
VI0

0) Cf- Co 0I CI 0 . 0 > C% U t, ->,0

Z) 9 VI 0 LL . CE D Ij 45 C) C- UuC

0E L > V I- S C n II 0

1. EEC 0 C v C C -5 - :1. u 5

LVIVto Q -V-- EL E - a CI a0 V VC.- .C 0' 34N
>U -N C E C LI CE -C 011 F0 VI-V 10CC - ELC
54 LO 4EU > LE - L a1 CV UV f. 0 -. ADC)!Co

VIC j !!> 0 1) cc In C VIE z)V C D~ -- C CU

0- -SI C in LE L 4DbL - C .0 VIC 0 L V C V C
nL5 'U L0L C- Q- In0_, LC L

0 010 11 0L L . OV4E 0 E0

* - I > O ~ ~ '- O~ W C L L U L 0 U LEV I C E C - VI0 C - C.
5 -LL)I i a'U a . U L 0 aI O 00 -3t C aV

toL . a~ > SV>.-CO1-C4 0 LC0 >-C COC-CC~

UICZ mL 13 Q C5>*,C; u, U.> - .-4 OI-I CVI -- '0
-4 J0 U0 0'VLI E0VL I C 46'0 C cC 0 C vC Im a

VIV LKI/I L S VI ~"LV 6 5 0 V 0C" Sc C> VE>-

US -.- 015n~nVI OO S " - -011C V 10;100 I.v-~C *0 L - U. aI r- -L U 0 > C 0 0
C .20 w.I-~0 ?a -C c OFCIII.VIEL C0

0 X >' U L 0. UenL
of L. Q' C CClC. L 0"V'

1
D - ~ U-C

10IC 'A 4 L M 0.- .- 0 M O' ' C '0 'D C

O' h SIW CW fn 0o 0Ir N !)- C ' - 1 E- S V

- ~ ~ ~ ~ ~ ~ I *S11V C CCC 0S C V 0 0)' ' - I ~ L E U V

IxL CL 00E 0 VL C QS/E Lc - !U .. C> VIn
-S. .4z ''.- Q EU J 10'- VI- Q. *0CVV c-I- D zCE

I'D C LV LnC VU E 5-.Q.' 10 CLw r LU VI .- >l-

.1 0' N/ o- c - .u zV - t2

'o otI %Vc1 09

_ _ _ _ _ 0- v-j L 1 Z-c

-~~~sF~s m.~A w & c -. ~'~
_ _ _ _ I'lC V, rVl 0 20 - 3

B-2

01 CC 0 31 ID 00U1 t 014-0
01 1 C 4- 0 - 01 1- L 010 0 101 0 3 u 0(

c 0 C ~ -0 0 0 r 4 0 3 01 > , .a U, V-
- L - C - 1 c z 401 .' 11 -0 L 0V3- 0
S 0 L. 0' 0 0. 01 0 -4 - V0 01 1 014

E1 a1 0 !C0 . - 1 -l r a013- *- > CC. V 03
a)0-0 E 11C0 f , 3c 01 v. 'm c -10 0-0) L-.-01

01 01.M 'D10rZ 10 0) r' L 4)01 U0. 01 -0 3C01 0
a' 01>L V) go.0.- -in 01 - 4)C w4 01 0 a) 00-0 .L

- 0 30cm L 0 C 0 4 .0L C U -4 -) 4 10 C 01)C c-c 0C r C0 c or IZ- 1.--04C1 C O - .4 - V 00.. 0 V01 0 10 a L U O-C 4)V 0 C >3. -l0 1 ~-0 m m m0C.W 0 e0 01 C0 -O 0 1 1 C L3 0 r0D10, 1 0. V 3 U 0 LV CE 1)- LCX-0
U In 311 £CO D -... LC> : s 0La > *004 C00 0L L 1010 ELO C X

CCL~~~~ ~ , 01 uL100 4EC 10L 0-1 0-U C- 011
- ~ ~ ~ ~ (E-0 C) M1. 1--1001 -) -V. ->-C - -C 1-

Z 01>10 ~0 L 1 0-CM O -1 01 U 01>00101 x CV w-00 0 C -0 0C
- >40' 0.'- C01C01-0L- > 010-. C:1000CE-CC

01 0 V1. 050. 00410C0I C~ -0 I0 0 u 01C C01 4.0 011
- 1 0001 -04-C L .- 00 U 1 0 C LzL. -014- W L0 IC C10w>

U- -O, C 01 N004 V 010. C) -4- 0 0 In LEV0 -0V 01
t, 3O >>0 , 1 0 4 QC.-0 C 1- C 01 0,1-,000 --u000 01 c

C) L l cc-00 o 010 01- 0o- w0 Cs 0~ Ol0.- C, 0- 0 1C: 000 VD
Co c 4- L-C E C00 -C 0 1 -, . C 1 0 011C1- -br-CMOLLA4

0 n---0 -C 01 4-01)->-C 4D0 C WZw 4C4IC0101L>LVLC 01 W WC 1 0
N1 01-l0.0--0>0.'0 0-C - 400 C04-14) E 0 O LL 010>

3 4 1- U0 C3-0r 11 - -C 0.)-.-0 53~ -91 0 r 4)V

010~~~~~~~~ j -x 'm1. 001 01 L fi-000L4-11'1C0L
01 inC- 0- L. OL C 4 U - C*400L0 1- r 1 1- - - 1 1C

c X-w- 01~- .- . 00100 0 01 01u ->C 0 0 C C I.' 1 4...

a ~ ~ ~ W Om 01-)0C 0 0 010 0>. - X00 0L.- C .0 C- L c

0 o u O 0 C 4) 4-C> >L)->C "0 01 C M-0,1) L L3- -0.-n C cI
Co - .00 C - 10 (nC 0 -CC0),0 8 '4 010 -0 C , Z- I- C -1 0 0 E' -C I 03-
0D I Lt -ML. 01 1 C- -a) U C C>1 CC -0 .OC C00 c 0

04<Z1r1. 0 E01 0.- CC0ZLW It- 00 E 0 0 0 cL c'- VC

-, 0 1C 01,0- - - 1l .JO -- 00001. xc 010 0L C- 1- CM 0 L0 Wt

,4-0.U--3-- T LX ZL U m0010 -4 0)UL0-4-400 C-) 0 E CV -'-0 a -.- 0

- w / 4- : -4 W : - D X >0c- Z0 00 r>1"
M1 In0wLWC C nC0C : 04 lzo

CL C. 0 -0 - .V C C3c1 w00 0O
01 01 0 V 0 0r 11 - 3 CCV f 01 0

00 0 0 C c ~ 1 CC - -0 - 0
u :0 e 0V L 0> 1 0 4 -) 01 -) 010 I- D1C z.

01.q 00400 C -e C - I -0 010-- 0 - 0 01- 010 0
- , C0 01010L2U 0 w10 01M04LC- L. X.10 02 C00 L W

LiO 0-- --E 00 0 01C .L (n 01001 -V- OC 0
2:10 L aD4L- LI-0 01 9) -. V M0 v-q . 0) L 00 X OC . 0 0 LE>C

>-403 0 3 L44 0C 014-0-' 4 _1 _ ,, 0 00E0-L C0

CC1- 11 0I -3014- Lc 000 0 1 >30 0 C -a00W UCL L -- CC V 01
0-.Zr-0 ->-n m 414 r L V01 C 01 01rV 010 -06L>0 -0 , V04--~ 14 r V01-01C4X0 0 C4L01-3 C0C0)101>>rV0C C
I0II4 -C. 20.00 f Q 010 C 1 4 VC.4g -L -0C0 10 L-C00 .1 CO

C---)-- 0101 00 01('-c C01 D L 0 -C - 01 4-SL -
0104L M40 .. V~ 0 0 U- C01 1 100 *C 01 I0301-11 L

4~ A 0 uC 0D -) a . 01- C W C - 4) V)10C~4~0 4-U

C0 - -01 4 01 14 01 (w0 VE 1 01 L) C) -0 -L - i L 3 C C -001-C D
C- -- 001-S -- CO O 01V00 E- D V4 010 -z4- 01CC a

-) L~uC *C 4)- E-1-0~3 0~ 0.C0 -- V 0 0 c 61- -0
L0 O - -L4)V CM~m C0 L ' -E - 4 E110- - W 010 -L -L -) !>
-C EU - 0 a al C 1010 L .. E1,4 If--4 4L-0 0E4-0 c 3

31 1~- L-3-0 L0 Lq C -M. - L -401 111 E -0L4
-0O-0- UL m > 01 C'. 01 W .- 0 N 010 0 -00 tM C L 0CC c -C 301

-co .0 CL h -- 100 C - 0 1o 0 LC0E -4/L14-- W *- -01 C0 . -1W
ZC 2 -11. - CL 01 fG 010 r 1 L O - .c Z1100V0 4 0101010

L > 1. Co -0! 1 M 01 U)s ~- 10 0 : 01cco01V -- 014 E> 0VL O-r. 0) '
m< N--40t CL ' 01 0 l 3 - 0--3-w Cl 01- 0.C - EC0 M C C 1 0

la - 044aL 01>0- 0 4 V) -0 11-0 U 3 > Z 01 C/ '0 L 0001 h01D 10 1 1-
01110 Dl 0101 C - 3-01.C.4 -C U)1 L .t 01 C -~ E1 1 0 4-4-' 01~

L0-4 -V 4-1U- 0 0 > 013 08V 01 0 0-0> 1 C 0 -l C0
01 CC 100 -L* E--fm- 0 0-e1 00 CL Z~-- 1 --- 4 0 9)-C

LLa--0 -4 4 0 U 0 W VC CL--EC -U 0 0 >--1 L0 W-)U U 111LU
C CC 10 010 C. 01V C- 1 0 01 -01 flO V 0 >'~ VIl -0 a 10 ' C 001 3- -4

-4>.f00 C-11'--.C E I OU-aCL C 41 1 014 1 0 01 IMU1-) 010 C.- L - C- C 0-- i 0110 0-C --- 10 V V) 10V 01 .C
-01a- .4 0/0 C00E 40 0 01 r fl inC D 1E L C 01 0 2C0 10 V

501 - -. 2- 01 Cm 00 V 0 C 010 00 0 01 0 110 U >tLC
c1 0110 0 _ L1C01 e0I- 000C4- ~03 C E C 0
00-1 SO -U D 4C OO E 4-1-0 20 E-V?10r LvL - 0-01 4- L-

so C -- I r0 V~0 011c1 M~ C-1 01 0SVCf - 0 L I4-

4 0-uC0- 01 u 01C(C'.>DCLC I-'.Cl 0 V) r -10 W-0 CO

I . E -.W 050L 1

In 4- ::r I L 1 E -

V; L4 IL 0 I00'C'

-- .91 50> 0> - -. c

a; Q > L 0 10c ~ - C

a C. C 1*, U -) 10 0 Cr

E 0 0 - V o C r M E C L C co*- U

C~~~~~ .-0,0 E. 0O- L 00 c UV C CC CU
0 7 Oc--' 0 C.U0 0 .U, E- 0"0 - I

0 ~ ~ 0 10 0' 0' C>C C 3E M0O-- CO c -- C~0

o -' VO U UE'0 - CCOC CCEiV .- C

C C to-OZ.I C Z 0 0 L C 0 C -4

'o U L v 0.0 C0 Cr0 d, ~ c0C 0.0'- -cr I- V>a

11c- LO . - C L 0'.- 0 >-0 0 LL:VC 0 L-- .

4) 0 4) CO CL OO 9C (' >'. LU C -V 00 C O

0 1 E 0 a) C L> LWOr -0ECE > C -D MO O 0 C - C
10 a) j'- c 0 o c- C C C0 0 o(L 0) U '' C - L C& I M ~ Cc0 0

C - E 3 C 00 C CE -0 Co L0 000 L- C tCL

0 0 c O O C LC C U - C .LUC LC.0 - -

U L/C 00 0 0uCW.0 1 V 1 11 >0 M E.Z C OL >, C0 C P-z

C C'' 1CUC V LC 0 0U 000 U~ M.L O 0- L CV)~C c0 in---- LUO > a, -0) ,14 -C L! .
> .4 00 C O0'ca 00 L. E Cr '0-~ -C U' 0 -W 0-

>~- 4 c' U- I 0 r C -0 C LcL 0 00 0 0 0 -
01 L -" C CUL11 'C -: -0 c 00 >~C C > CC o -

>-M 00 .>C L. 0)C .CC 0 t. ~ 0)c.- C-' 70 > C. cUp0<

0.01v 0 5 TO O --oo C 0-o c- U0 W o K- *C.

00 -- C V C U. 0 a aOC !-- -, 0L C- C oV C1-
U a 0 QV0 oCc-C. V~ '-.C- O ~0 C0 10 19 0, - a: I

V C C C CL .-- 4)>- m - -- c.C COO x >
V -C 0 0L O L~ c O .M00 0 1-Z C 0C . C- . 0.C C

0~.co LlE.0 0 -C U a4 i 'VC)O ,~ C .0 CC'

-0 0- - C O C)0 (a V U - 0) Lc~ 1o0> L C CL

Go 30 OOCIDC M- ,00C aC CL,-C g~--- c0 u0 C -
r.0O aC -C -C'00'U L-~C> ~ 000

C CJ CC 0 LU 00 00c V ,4~0CUC 0 ac 0 C03 v~U
-OOVC COU000U OE 0 4).uJ. 0--- 0O-U 41- C (

.O1010.C - C LCO L. -C> W. 00 CCe ixLMcr-r
-LNOCD tC0CUWCCC t0U C 0 MC CUCC 0 0 o.0

0'D-O=
0 1

o 0 0l U U 0. 000o 0 C'4 .00:-Z
0 4

' U C U-0 wo 00 C4-1'

C 4)4 C Iz

w~~~ ~ ~ ~ U, -7
C 0V

--
- C

C4 4 C E4 o0o CL o alml1, > C 1 1)0 ,00 0 0 4 4 "E

C M V) m 00 U
-

1I lU0 10)-- 0 < L

- o
cc'- to0

C '0C r . -

O .> Cr-C U. ~ 0 -> -

!- 0 - 0 1L rC m mO =' 1' C 0 3 ' IV

CC Z c- 0.- 00- UUO 3 LOI -0 E - -O

rOCC C CO - 0 Oc L'- r n 0 l 0> 0c - I

U.C 00 1D 0~ O L 'o 51 00, 0-V -- 00 Ccc Cc

7- COU' U CrC .. -L O O -w > C 0 M- 0-C >

Cr1 5OU d,>00 00 80 ;"' Z 00 -CV C O - 00

00 OCOC L CCC~ LO L c C I- V L CCO>"

, 0 M>0 C c CLU - - OC" - -Z? 010 f- -CO -

LoO V 0 301-
0-- W-C'-") 3- .-. cCC 0 C - C

CE
Lrc- (C-L EUC LE c L o O C U--

CM *0Ci Uo -L C c I 0--uc 1-3Z0 Cc Cr UO.--I/'

U0 0 00-. C VL C -- ol~-~ .OCO CC

0-Zc 41 >C0 'C V UOC L - -- -U 0 OC VEL3' ; -

0c-01 UU U' 0 CCC 000 -O 'n0 OC C C - - CL

LII.L~ ~~ ~~ UU -0.
41O~

c C L -- 1 w-LV O c -L I.0 0

oo~I 4 Lc ,c'- EC C0 C ,~ CC.E 0

00" v00t U CL 0 - 0 U!C 0'- O> UzOL w00 10 >C- nC - OQ LG

OCLV>1 L000- LC MCC -0 CVUC CO L 4

UW4 0. 0 0~LOCL-0
3

01-0 - V0,0~> O

CCC U02 U
1 1 0 0

00 0 L4 00 -- 0 --
C . (I E LI

W 10I~' CCIV UC. 0 VO 0 0- O'-U-I -1) 4 .0 00L

'iff.CJC -'-; U -000>U - CC UL 0 -- C -C

:3 W O C') L 00 L. U1C I. L 2C 11. -11LVCOIEUL

00 1, U 4 CC C 0 CO -C U0 00' CC 00 ao C

O RX - 0 op mL a0 0 U ICOM 0 M .CL U-X MlC C: -0 C>

-- 00 , -V OC CO- 'LU- - -0 0 -)0 ICC OLL O c

C. 0 -'0 C CL u u -rL - c)'DC- U .- 0 L 0 -L

0 0 .Ct
Cc>)C O o'V Z0 .JC- VC 00 OLODC

L. U- -u -. 0o' 0
E- UL 0 >. VOL CUUL

acNV CL CC 0 L 1C0, GulL CEOOV0 00

L 03 >D 'U L V 4' C' oU0 0 L O' 0000 0 >0 - 0 r 10 LI.U

Q wOC 0-4C1 01' CO CO01. >4 6L C U O L V
C-.E

0. z C ' U 0 inr-0 L In 1 -V Cc IC C C C.1 -- C c-

U
*-

-Eazo . a m j L

B-4

0IV 0 x cn o c c w > 0
c

r 10 0 L Q L L 0 X M c
c u w >

u go a, c c c E
Ln o cc m 0 < cn;; Q 10 z E 0, L C

'a L r L U E Ij Vw L a' c c >fo L CL I OL017 V) 10 L 0 CC 6n a, M 011, 2 T! , L M V E 0 m It
C L u v 0 L CC

D M o C: c c c m ID 0 w - tr " w
I > u :, , Z- , r 0 - U D E 0

w I I u c Q u c 0 1 5 m 'C - U M M W L 10 r 0
Ql CL Go C: - L > - - L -1 M L 41 - r 01 c

E a m c Z: 10 a C, :3) IC
U L OL 0 U u L u z 31 a C U C 10 E >

:3 0 E IV L - 0 C ul :3 It C
V, E -D > c c . c

> z 0 0 cn - o rI ! 0 o 0 !.o L
0 i 0. ! U 0 U CD Cn L C L r D E c C

L L C r - C > 11 0 4, r U c ! V Ir0 - C (n 0 c 10 (D to - c 0) 0 L 0) 0 'D L 'o Lo > 2
E - v L 01 9 - L a) 0 > >'o z 0

10 L M CC V (V 0 L 41 C CL L c c z
U 0 01 10 C L

.- :3 m D c :D 'o m m : '0 U M .0 0 0 C, >
Ic Ic L M m - 4) - (P C 1) C M 0, E OL

0 Z Z U Lo C 0 U) C fC c I L Ic0, ! - a E V 0 10. 0 > C C D U Cl - : - - 0-- E
- tr 0 (c - 7 0; - " M . 1 11 E :3 w :3 C, _ _ a u tc a c
a, u ir - 10 M X L V u 10 > It , 0 c l E 4 > > v
E v, a, a) a) 3 u 0 - z c c

V) cn jo z in c m c M E z
C C 0

C 10 1 M :) . _ 4) 0, 4) Z 0 ch a m f C ! E L - - c -

, , - :, c s 4, w -C
CL c

0 0 Z r 0 - E E - wO E L 'E 4; Cm :0) 0 C 10 11 01 " L Q 41 M I E

u 10 L L L L 0 L C C M lt3 M 0 u
ID t D 'D CD E C 1, L 0 39
- c L 0 Z 0

m .10 CL t CL 4) m 0 a 'o r c 4
C 11 0

11 L 10 _ L (A cc

61 to 0. E 0 - - w - E a 9 10
L Q; > 4, 0 > 0) M L M E V L 0 0 c " 0' - > 3 C
IL L C _ lp 0 X CC a 4) E L - 0 U M L C Z C 0; 10 C CL 0 E - - m
u c Lo a- E 0 0 0 0 0 4, 10 M (1) CX c Lr

'o
E ' 7 D z rE E 0 C L 0

U) 0 cc 2 5 = m m 4) 0) m 0 0' 0
V U - a 0 L >

10 ou - 0 CL V Q - Z Co 10 0 IUL' Q) L
X -9 C L M E - U 0 D (D 0 M En U 0 In C: W Cl > IC a, L OC I L d) W 4 0) Z

-4 0 a M M 0 CO cc 0(. u c u 4 -1 0. L) 0 M 0 m cl lo 0 0) 3 u r: 4 D V -d V 0 u

D
0:

E

C m IC) r c 0)L 10 4, 31L 0 r m W u

C . . - 0 0E M 0 (V m 0) - 0 c c aj > 4) C v m L It M L
0 U GI M- L 0 4) E C 0 a) 10 0 U 0 U) x

L 3IC I IF L E L Cr-0 C E 0 W 3 M L Z C L 0 W z ! r c z rC D 0 L 'o u u ol m LO VOL >1 c cl
ic c c z in > - 'n D (D 10 0 11 L u w 10 2G, ? C E 0 0 4; u jc c L > L

10 0 at C 0 L 3 > 0 10 M 0 L
N to C , u 5

I L Z C 11 c 'n v M L U MI c 0
C, 41 OL 0 L 3 4 4, E W m OD > E

> twr) C) > C C' L d) >,

V, 10 E 0 M L M C' r T r C

> o 'D E r L C L L

C a; 0 C 10 m L 0) U U- G. W C C V) 0) -cc m 4) L ID > 3
? I w r V) c OL L E 9 3 *4 >, a _ _ .0

0 E M: cn 'a 0 CL a) 0 ID M 0 0 U) Ch U) L 4) 0 4) - r
Ul u M 4) > L 4) 0 U u

! _ V)
C: - 0 6) CL M L Z 0 0 :3 L u '0 > u 4) E

w > 0 D D 0 0 u - 7 T - c 0 0 c .10 - - L 4)

L 0 CL C L 6n (n 10 0 0 0 CL E

C 0 C E 0 F M 0 L 0 IC ic D U) C 0
Q W

IT 0 0 CL
:! >,> L 0 0 C ; 0 0 t E , W ; 0 W ; ID > ;;.2 >,E U 0

0 8 a) c Lr:--LOMUCO)U--W - 0 -lot) G;L.Ccu)v)-Oo> Inw G)M-4, c C u 0 11 m 0 11 Ic
0 w jc E N - 0) U) U E Z- " .4 C aj C4 Z Ul Z U M in r U CL L A > L 0 0 M U

0 a; 0x cIC t) r_ E u 0- 4) r 0 0- 0"' 0 c D D 10 m in m -
- M 0 w c 9 4) '0 In U > M L 0 m 0 C c

M 10 U) m a c L ! L D '0 r - 0- m a) w -
L 0. 0. > 41 C W 0 10 91 :1 L 11 U, 11 M 0 L L 11 0> 3 cc 0 w 0 CO U L Z L 10 L _ 0 0 .0 4, .

m 4 0 - - a - u CL m 11 U U E41 c 0 u u . c EO - 10 10 c 10 'too I m 3 'dC, C, ML r= CL- L 6 . -0co w 0 m z u, ! : 0 > c 0L, m - m c u 3 CL m 0 0 u C 0 CL JC U) a c D 4) JC41 M a) 0 0: >, -C 0 L C u Q r MU a L C4 >.
C M 0 . L 10 4) C4 C L ?_ C 41 0 L 0 6 cor 4) 4) 9) U M 0

D ') C M . 0) Q 3 Z:
2) 2 0 X U 10 0' 61 M 0 CE - C 0 E 0 V) U E - -- C m L uw

Mr!M CEE.W-C 'mlW-C<L-C>,L.> (4>->10LULO- >,VIC V- Mmlom-
L ; - 0 ! 11 1 M L 0 C 0 3-9 U) 91 t 'I ; C O 0 Q.; 0 0 0 0 M.C Q 0 3t C
Ic L - - u t 0 CL u C 4) c 0 OL Q 10 c ic w 2i in 4) > (7 OL 0 M - 1 0.0 11 G) c M ro E C 0 U

IGIL C L 'DO 1*) >, L 0 11 0 x 0 3 4) 0 m 0' W C _ r o E u 4, 0 > 'o
cl a 0 '0 0! cz 0 010 a L . U) a 0 10 10 E im c r-

in

-sow

IL

'm (n r C : C
z c .. c L 20 FA0m a) c04 a 0

C. 4- C E ~ Z 1 L- 0

-- ~ ~ >2 mC CCC L - '- CC C O
r. Q; Q . 0 EO L~c 4 - 23 L ' C . -

C~ ~ E ~ 00 Q.- C 12 M2 - - -C ~ C C~ CC 4 CV Ir~ C- 0 C L C C

U2-- fo 2- 0--CO - L~ -CCt1 QLc - - 2C 2-C a L Y
10 CC U L- C ILCC 'C 2C c CCC - C L

40 m~C 0 C . . C 3 oL LW -C C C -0

10 C 10C C C C-C.- m- E - - *0 0 0CL C.C2t

cC mC !C -w c c c T E > l CC -C - LL " - ! 0 m 0,-
CC L) 0) 0CC cC> X 1C GJ -- L C .- C CC

-- ~~~~ ~I 0. CCh-C - C 2..0- 0 ~C0 0L
- cC2 . LO"CC . 4 2 C 4)L22 C.2-

.- 0~~ a-l <2> . WL CC E0 0- C M3 0 - C - . -

vJ CL> t C T 0LCC C C C *CM C A CCo , 2 C o. - Cj

~0 ML CLC L C-C >0 0CZ C > C- a U) al L
>O a' C.CW w- CC 04o . E r2 --)C

C c M22 2 E20 CCC t0-)-2> L .C 0 z
cc C- mC- 2 -'0 -.- CO-20 000 in 10 C C. 2

oc K> 2- C E > C m3 2 0 a-- - E C>O- 2

In >~ MW 2 - - - CC CL c 4C c ~ M -. C2 CC-
0) 4 4) -. > 1- 2 L 4C 'c -. 0 In- -o) c

040 2 CC- II 1 C0 - -W '- a,> 0 w r0 0
0CX . U LCU- - - - EC C C 2 C 0 LC20U2 - r C

-a20 -0 - 22)0 L2C. F C u- - 42 > L- .C

C4c2 a LC C C-2 24-0C L~ ~ 2C >0C

W0'-.C z 2 - C 02C 0 C0 CA 10-. L C
ul 2 - D>- L.C 2 L C :3 LCC LC L V C M F

CW"-u c C - 2C - L 0 7C 2 42 000 2C-Lt
(nCID C W (- C E L CC 10C)1)0a C -000 - .- CC.L0210C0

22 L2 eCn C 0 2 0 C 2 - C(CL -2 IUD 3 U02cL
O-~CC0~--L2C-- CCC c2C -L f i..-0 L~C 3 .O WCL

94. (2 W C 2 L O C > - L ZC L2LO0) cQ)4 02 2 r-

~20- 2 . . - C C Ly .~CC ! r- 00 00-2-L
,-OlC(a.C> C 022> 0 0 -C0 2- U- -CLC2C fL O.V

>CC>OCCO>C2CL 0r .- C)O C -2C22CL--W-

CC 110
4 4 M m4v U E0;

W 10 - 1 0222 >- > -C, C CM3 14
C C oC - m 02 C LC C C UC L) Cc 0 C-

2 110 C , c > w C > U 2M Cj > 4) M- 0- CCq 0
2~' 0-0 cr. -C> CO >2 LL 4- 0 2 O C

C -02'-C C 0 -2 L. C:C:-~l CC. 02 0c
D 9 n- 0-- 2 2 U C 0 C m ~ CZ Do, 2CC * DVM 0 C L 0> N

0.~~ C 2; CO vLL 2C C C CU m W . (N - 0

2 .0 w~C- zC LL m- C -- W r2-C - 0
- 0 0 C mC- c C 0 2 C >2 a) CO C D- 2 2 I 0

0) L L C 0'O 'O~ UN -L .. j2 U02 - C 2.C3L
3 WUC - - - C 2 v-- C;. c2 0 (N 0.fla

!C.2 -C 2, L C C N LC u-O. In- CU C-- m)r0

--2--- ->0 10 0C 0- C L -2 20. > 0 2 'C- 0 2 2 2

OW- C 0 - Q. (-)0 20 C - m (C -co.- ' 2- Go 4) l 2 20)
00 2> C2 4)>, XC *C 'D D00 22 -L N C

-9 0 u-'-C 62> C0 '- r C C U . L L 0 2 0 00

.- ZO UC 222 0> - 2- x.-..~ ' 0 0 C 0 CL

cc0.2- 1 0)2(L - C 0 2 0) -0 C 2-J 0) 0C3L 2- (N.-2
0~~~~~ ~~ Lt2 0 . C - 2 2 0 C EC 0- >5- 0to2 5 9 L CC

259-2 02ED2--- L L-L 2 ECl C ODLC L) z C4 0 w2 0 a LS-CL
D a' a)L L L c0 L 3 -C L2.- L) 2 - EC (C C

0CL O 20 M LU E 'c L L O - 2 3 C- i C 20)1 .- -0 C2X 0 2

in L) I- L nC Qi

4 31_ _ _ _ - I 'ain-z-1 * o -

CL C

co EZ 0 n 0

0 CE -2 U 0 - --VO--LL- r 5A U
-c 0 m- - C ID 1C a > 7 0 U -

a.C 0 u -CE w 1 L - - C --'D 0-C f c (C 0 .

LCn C E E C 01 LC - - >- U L
- .'C U -L 0 C uO CU C .C0

0)f <(C EC LVV CL L -OCL) - L L C CCC C ,a 0)V .C_
->.0 Ul LCD- -(t 0 EU u itL , m .; a C > L

(V L-~ CLXO uc - CL CO Za,' 14 - E E L C - C
C fE> E L (L CL v .. DCf OE

0 0- >E C -E C O0 .0 0 0 L O -ma (C C L2C CV S 0
Om >10,<>Loc 11 c CL >CC.0 Z C L a CLLL uC c c C V 0UC4L v

0) (n m---)fl-,U COL.. C-- L. 4; Cr -Cin Uca.. Q-E C ECL
U - -C- L Q-u c0) : !~ .E 4 - MQ - U -OC L U p

4) C) 00 n4) U CL LIC I ULf - C Ua,-. aL CLL- Z C Q. 4) W2 cc -
L L->CLDZa--C - a D 0 >Z. . CCC E E >nC 0) 0 CM Z

N-~ U) -- a) L 0ECC 0 0-CCN) IC L t I~L ~~UL C O- VC 'PEICJ0
-n cEO(O Lu L Go -- 3 OL UO L 0CL C c E

io E-C C c OCM(CMCW-LU : C.-) O Z C - CL C-O E 0 a,- 8cC -
C C -- (ImoC0 0E - UC. 9CEi -u .. aE) L-C) 2

0 -OQ44-O I-- ;-0C >-) :; 0- > C > > 10L(r. C L EC. >-C

'C C E--. IC LCC a' 'D 4C E C -E CO n'-4-.-
-o~ ~~~~~~~ .L4C C 00cC 0 L- O CE - O E-

Ch "- a'CU 3- mL m O .L (C 10 - CC L. . 0L U- .->

U00 U- -C. -C L U D 0 -CO -- 0 CC-- c 0)cLC 0 a. C L L
V) Z 00 E2L M) f- -O O (C C E ICE N CE 0 0.!

CL ?. ::~ I..- E-C C (n -VC -CEOLL-C LL E- -0 - n-l
CD C C-0 C 0. U Lo.-'>E C.-OL) -

- ~ ~ ~ ~ ~ ~ ~ ~ . LL U) >- IL- O CC-C O - U V . LC V L - O-
00 *-O. CUE C--I C' E C C 'CC) 10CC CL LC' 0 C l..M

cc0 ' ')cU 0) - -UC0L- w -E' -to 0 w 0 00L E-EC-- a;(CC.C;-' . CC

10 C 41 C -'E CPV-U (C G) CIO CL - V O L C X c

>O Q X EL L C LC VO ' L-. E> C LUCC CL-COc.(0 CC-C.- E~~ WEAL COL ~ CC 0 C..CC CC-- r: 0(--,
0-C-OO . O -LO-:LI -- ~. L C L -.- Cfml r CE; - -

'-4 L-L GCL. O), W 0 E -)4 - E 41,Z-CLC cCW O DC - 4 LC C

L A -) '00C,- cm LA 4 t - I
41 0 z 0 V, m :C

0 0 0 0mL

l :3 CD 0. D~ COm

VO L LL.)UL 3LL- C CL0 W-C M aLV - L - C > C) (c> C CL
L ::, uO 3 CC-LC'- a, 0 > aE~ 0C(m c z V.- m Cr

(n D CL- ES M L E 3E.- C L - 0) . - EVE,'n1 o 0L C 04-
0C C 4 0L .L - LOC ; L M O. 9))- c V.0 -10C- - 0 L,

0- 0VCO 00.C u 1 o C-VCLCL 0 >0) CL c C,> .O E C
C- ~ ~ 0 0 LCL 000 VC E -- t C -C7VL- .0OC- LL -~L

CCVY-- LCL0 w CLCULC . cA-O '0 --. !0-L L OL

0 U - E' c W4) i E -)(C - CLCL E 0l -1 - 10C .- E.CC) L LC C.

LEO U- C 0)GC>CM U00 C rE -C in~ 0C 2CLL -L
mL *EEO 2; c-C- -Ed 4 E ->2 D rLCC L- V

U L W > O E -C. .-) CEL 0- x(-' -C EC m COCOmm DC 1mc Ec :ILU L 0L C C - L C. 0 E0 E L-0 . C C -

OL > CLL (EC 0-0 > C-> O > n- L - n U U)UQ))ULCZU-CM 4 0C -U) MC In.C.-
WL !L CC C CC. -E WV- L- 0 L *L> ->- Lv10aLC _-CL 0-EC a

VC >E 0- L)C V - L -Cc-, 6 ED uA *.L C OL-- l .CL EEC
L.C()CC MC C EE O Cl WE EEf. LC0L 0 ->c 0 0L. - L(n0c-

C 00 C- D C O>COO 3EV LE 0.CL u 0'E 4) 0 OWC-OLCECC-UE... M
-4-.- u C ~ > L O C -- , m 1 0 - C'E CE *0V C *C- . E E r. u u00

C L m00Go VLL 10 C U M - 00 OCLT EO 0 C - - C0 r r) M 4Cr C.C-

.- E 4,T 1; M LECO ULO C L C'. I- 0-E C CUVL- w OLCC ? D
CCh - -C)- " ' OC- *E-EC- LA L W CM L 0 U) -X L 4 'C . C)CL 00

0.-C >LC E>CCCO---EECELCIM--'L0 Wl O tLVEC0 L 0 C - U C

-CL CC 0 cn L L Q.c-'mV V-C- a VCL D V0 -OVOLA&MC4EV> EE -C CL 3C
a)- >- 0nN000 - 0L C C C V -: ,'a Mc - U-)LL m - u m m LOV ,-CO.In

O'C0. w..C V OC fC V 0D -oCC O C U. IC VC-.--E-,
- 103 0 C CL..C L-C C -LCU.L C EC V--CL CV c V

ZC -- C- EL LC .- E'o C C> L LACQ. COV ED 0 C 1OcCi tE rOC El

C L D C C C . - 3 O * ~ - ' C - to- - O O L . V C - OL
0 L (0-9 U M > 10 0 L .. 0 0 E~- CL- C E C O -l .' 0.LC CE

ZV0E LC UV-C E V C V M- -o, V. 0-.L4 -EV O -0 OL -4)-C 3L03
C~~~~~~ MELN4 C 0 o''C C 0C-.' t0nOL- C - UOL CL C 00

- -0 C . 40 L -L LV! C OlL CC V LC O .(C vC C O M*O CCVUC(C-LCC.C -- Cr 0. 0 Im
> 3 -c 0 -O -C E u C -D lo -2 o -C*C-V-Lc c o 01-00CC

(-L WL -V C L r, LL0 COU(0ECON - M LO - .' - c > C -CC *C-0 CZD

L) 00 U) 01 v -c z -LOVC 0OLCXC 0m D C 4Z(J4> m -L >C- CCeOV(

4~ C 4V' r 1T
0 4 4.1U--,C C ! o 0 DC2Ic 5

z m) 0 V,10 z 0-
4) 4 tiOD l c) 0 M 1 C ul0. M Lf. u

-- 0 0 - E)
E 0 00 r. L C C -o

.- E a))Q 0 L Z 11-0 :w0)0! c m.CCO)~~~~~~~~ 0 L0 C.'. E C M)Q U~C U.U)

C0> C....- C 0 C3 U -LU) 0 0C V -L :3 C c o 0)' -- 'CQ0No)W 0 0 L C cC0 0 OC u) '- co
-CO fl0)U-CEC-W C 4C)N-'m 0C C) 0 O a') -U

Ul-0- L CUQ C I/.1C C aL- L- 0 u 0 U 0CD~ L .L W 0 >, C000 dC O -LU L. a) C0 -CC----C >U.- a 0 L- ::N T CE W C- -)V 0 - 0 C'

(N-C~~~~ -- CC- Cc UL 0 W,- U) C) >).0 E 0>

L)CCC c CV.Nl'-- > C CL C 0C.C U C C ---
0 0 0 0 t C- C)C - - U .L C .C - - CC L L))U

-0c *-) L)~- ' v) oC00 '. uL 0 C>C U))Cc E 0 0 C

, C- - .0 - 3 -L- O U C - C -M-V0in L MC C 0cc c a
C "-MUm) -L m 0 C MCO- ! -C Z 11 >L 41 C E W CC - M L cD

C) Wfl U- 0 - -Z- C-C -) O -0C C 003000CC W 3>0ULC W CCC~ > CC-U CUML) - 0(0U0).- L -CC 1 ; r -10 000 C 0 I0C - L)0 -.- C

LC U U C OC U) C, 'a)-N JC r- - C L C ! oUM4ML0
*CO0 0 r E- V0)C C 03C -MC C ') CC - .

) 'a) U C0 L-- a) ! -u .- CC -- C C0l0 L 0 t
3CL C 3DCL U) CM '-. a VC F "0 0 o CC0- C0--- O LC0 0 M . -

U)C LUE C 0 C. 0>CN O) -fC !-- . Z 00
C-C'1U) V C C 00)0 -CC 0)0 C LC CN V.
0)CO CC-0) CC -M EC C LC .- a)UCa C Z. L IM *0 ';0

mCu) '0--D -'0 L 50 COJC)-V 00 a) m C-EU -- U -cc 3. E :u0

a.) - . C - - OW 1- ~ C. - C UU0 C0 -CD LL -L 30M 03 M > C C&nl UC C DUU-> MOC- C 0CL 0 4 V -
U) C C -C- a) LC CO LC C -U). m. l.> 0- >C m o Lu4 LV

IL C C U U- O -- C 4 - C) 0)0 -N- V C C '0)-)) U
a) 10 '.- %C0 Mc m LC> 0) -C (n (n)-L)a) - -:C CCa

CCWU) 0) C- O C L0 CC1))C- - a)C 0 W W L CUU00 L *(U)ZO0U)

U) c C 0C3- J 0 C).) -L c toa-QC C O E . C- U) L 0 -C V

al~) uC 0 0 C)C'-'a)C U - M U) 0 L C W.W 0CVC.-.U))).-'C-C)CC

CC) C C, a) a-1

u C C -

E0) U 0 C C) LM C Vy
U ECU)- u'w C 0) U oU _ 4 .1 0 - r'

W) 0 C C C Z 0) >0.--M C :3U- C 0-a)M CU)m e
U) 0) - a U) 0 Q a~ _ - L: M-=

L -'- CC- *C L CI C 30 Y a)WLCoW :IL - 4 -10 WE 40)(E
U) Z U O -. CO CC CO) U) W0 U5 WI.C D - a) L) C zC 0D))

u)-)U W)->- 0CC' 0 U U U L ! CC. C, r C C0
-w -. 00C4 -a 0 WL Wa E U - :5C t) a)- L '- C'- 0) E CCCL-1C) "z

!- CCC.-!-L- CC a) () >- 0- - CL EU) a) 0 U) LO

U- L3 E.-CCE a 00))- CCD C- -4 z CCCCCU o M - U) 0- 0 - 0 -C I

-~ ~~~~ EUC CL CV 0 -C 0a) u U>C0 0 e O)

V uCC) * 0 T) -0 - -M>-C -a C C O 0. C Z.-C

C - C C R -IU C -'- L) a)- 0C0 L- C U L - C C) ' CC C O -

-C- wT> L CO C 0 DC0 C CW - UC0-C V UO C 03 u 4 t.0 > OC CC - - C Cl -0 C - U -C C C >U C m4 lU (

M- CC'--.00 CLCv 0 0 C - D -)3 CL D' CC U) 4 C .-
U)-00 * C 0 C ' - oe. U. W) LC 0) U C . - C C

U) CO O. V O C 0V -C>- C zW a ' c C U .-C cI
0 C -CC V0 0 - 0 Cc C-4ZM U) EV MMC C V.') ICL C 4- L

It CV-0 CC u0 !-C 3I LU-C C > C n - a) CL m 0 C CU C a). 0-
I)-C- C C-J '-C0 C Ci CZ aN CEa)- WC O .-

1C0. CCC ;EOC0W C E u- - C L.'C0)0 Cc.-0 -LVoL -
cm WC - C C U)000 V V,1 a' Ix 0) L 0 C C - U) 2

> C ,W) 0C 0 WU)-- LOC -U C .--'.C)0 W L)' C C C 0 >U-C -'-Cr OWT
-C)L.UW -C LC CL 6 GU0) 2 x CC - C i m) C-U)CM 0 C E Z -L EC

m- Q go C >C .C C0 0 L I C C)'.- CE CO - L Z E

4- CC) 5 ' 0 U - - CL C C)C 0- C '-C - C C Vc 5 C> wQ-,- .
CC U CCL V V0 --)'.D ~ 0 LoC - 0C C C .3 C-)-U 4

010UC 0> 1 1 - CCCC U C -- ocW 0C - C>- z0C V U oCL L.
o40 UC -. 'I->L -CL LC E -0 V U) CVCC C 3 'CC-L(TU Cl . 1C 0
U) CO-V-C u CO 7 0- CC wV C C 0 cC CLOLOVC-C C CC C0

CL >. 0 -- CC)C U COM - L UWO)0C.- O -
L-N'-. -C ' C U - C U)w - C . 0 a 3 CT-C -0C CC C -CCOC

Cit 4 1 C0 Ew C C V C C E 0r . 0 U-0C W- C0 W EC m
koCC- -- U- -C-u c 0) 0U O 1 U L L LL20 MOC -U) 00 '.C-C 0-0 1C'CICE C-CEOa)C L0---L) L- U)0 E' U)M -0):'M-OC -LU!COT IV- *->OCN-uWE -C-CC-U.-'C>C - -- C -CCC

O -I'CU- CCC'.-'CWCC C .J 4CU'-L) D 3 WLCI.'Cal 0 C C-C'E)L LJUU.I-
.-'.-) C UC L CL - C Lo -'--W 0 -Cr0' D m-mCa - C C CL1 1-oC -

W t) W Z CO L C- 1)"'C L- D -C C J CC O C .VC C - - m' 0U
c40c c VU '0JQU) OC. c V c -W>)WCo CO4)r-- -C 0) 1 ' U) 0-

U, D, I:
c 3CUU C UM> co I

4 - 4 m4o

C- . .A C 4

> c.; lcox
U U) 10 4) z w L) I c ic m m c

M, c 0 E C IC
c w :3 c :3 c 3 C C M a;0) a) ? o-CL IC C 0'.0 C CL - Q) - E U L; C c 0. M 0 a' 0 L Et C' m C -

5 z . x _ , a' 0 a E It Q C Z C a L > a
41 L L I u K o- - I - - 0 f:

> W. 0 C z 0 0 E, > ID Q, 0 L r 10 M > Lr,
. I E 0 M C39 Ol. - 0 - 0 CC 10 >C 3 C 0 U M a E a:3 E > L X I a; to C)

m C 0 L W QJ VI a) D M C C 0 > 3 0 c
>_ a 0 Z V) U L M r c tn 0) a, Ic
U) L) m E V m T CL Z C > Ch> > 7 F10 C E a) V, 0 M . 41 L

Ol L 0 c C -to C D 0 aj c tr
a, I? Z, 0 Z c > L L a. T IX E

IC) r a, C, 0, 1 L C: r In E LN ,
E C)Lcow, I I -L- L Q; CL, 0 m C u 0 0 U Z Z M 0) 0, .0 L z (C Q 0. - L LS M () CC V 1 0)

U 0 L U 0 C_ L; 1 0, V

'V !2 3 0 I CL - 1 0 1 41 r .0 L

0; CC .2 U L CC
C 0. c v c 0 - - OL 4) zr7c !ow OICFN c OL;

:3 10 > 0 N 10 L 10 - 0 a) tr, M 1 0 C 0 C V a r
u - a a) - < . _ a; 0. 0 L . (L _

E tr L M A L
C C m V, 4 0.
U M 4 !C E 00 QU L In m C E L

c CL
1 11 E

E 0 C 0
a, u 'o c 0 ! 0: - , , . -V-C S tri EL :3W, 0 - 00 0 X C L ix W

0 c) . I- to c 10 c > L '0 0 u 10 c c 0,
C C tA 0 V) M a) Lo _ In C, -C m c c

v 0 U 0) > 6 U - _V 'Q CL r 0 3 v a E 1 s . - - E :)
01 0 L '0 L C - 0) 0 E U - u N L c IV 3t T L C, c 3t v Z

U m IV m m :) ! C - 4) 0 - w 10 tr. - Lou u r
C, L M E 0 - c

M L > 0. (V C Q E C r W - > :1 - 0 ag0 3 c Z 0 C) :0, CL u w (z (3) 0 0) - D c 0 m c E Go Q c c - 31 0 W. e E In M L 4) 'C
.C c E C . C 0 C > to ol U L 0 L 3 L 0 e L Q) a. r x I

0 0 L' 0 M 0 10 Ul '0 L C L w

s L 01 0) L U 0 ZW V, 0;

0 0 4 0 0-- m v Q. 0 cw > . m 11 . - . 0), aj I

a u c > t
10 L) L) c D m 0 c D m L 1 01, E L 0 E c w 31 0 a, E

< . 0 M . 0 C' y
E - CL c a) 41 m C : L . U C L z 91

2, 0 C U)t Ul D 0 "1 ! Cl .0 T) 4) c m 10 u 0 C U 4
In 'n < c m > 0 v Q, E u 0 0) 0 D M c 4) 0 05 5)l 0 m c 0 Ir X 11

0, 4 - 4 - C - 0 C C V L 0 0 L 0 M L I Cr 0 M > L 0 L 11 - -
0 In Z) Z 4 0. X - 0 z 'D M cl CL 0 OL T E in Q. 3 3, CL U D < 0 u 0 z

co C,
a

L

U' 0 L) 0 a)
4) E L W u x

c c a' C c
m L - m m

a) E M 0 L c 0 C 0) CL E 0 c u z
L > C D CL 0 !o E (7, C E L U 0 L

L z w 0 0 io L CC 4) 4) 0 in 'n 0) c
CL c c 1c;

L L 0 ZU U :5 4) E u . 0) U) u Ln w z m m r 'y0) , M 0. c > I N - 0 0 w a M 0 0 0
0 in a) a D c OL L C u 0 u E (n U 31 V
Q a) I m 0 m c w ; 5 M CLO 0 0 0 ic c 11 r C

V) 0 0) C L L v L (L m 0 5 11 - L W E c c
a, 0 11 z L 3 L c o u w a L OL 01, L M 0 L C: a - c 4,

U
.C :, D 4, 0, C C 0 c L a) - 0 4; 0) c E 0 2 0 :3 u "cl >

u l I C a) E C 4) 0 3 m 0 L a; c
D C 0 C 0 w a, E 0 w rm tm a C, . . . CLI C

0) L U 0 0 :3 N L M 5 -to c 0 >T 2 Col 0 0 a) c 0 c Ea0 iu U _ 40 IV M -3 0 > E D M E CL M
L d) m m ;: V) - .- 1 0) 1 - 0 0 E 4 10 0 3 u 0 E m 0

V) V) 0- 0 X c E m 0,2 0 z - > - 0 -4 E 0- 0 0 0 c a) N
4, c u z .9 m - O _V) :3 u OD m 0 0 - u ic c .0 0 0.

a) 4) m u 4 r oz 0 m 0- 0 L 4) U c
5 L '0 > x I fc E

ol 0 0 L c L 0. 0 L) u 0 it) w 10 0 0 m L m 0- 1. '0
E m 4) 4) 0 (a L L ! L c 0 0 L 0 r 0 C

w 0 0) CP E 0) '0 0 C 0 L a) - x C c 3 c 31 0 N 10 cl 0 ar 2 0 L) C - I.C - M 0 .. _ 00 O'D 0 cl C v L ! 11 W m
C

LL 0 C '0 - 0 0 Q Y. 0 4) z 0 0 a) m 0 C OL L Z 10 U U Ln
r) u 0 0) D u u m OE .2 U) L U) U 0 M L) m 2 D m

U) L a) a U) M U d) 2 . a) L 4) L W. z L > !0 E L
01 C L 14 :3 u 4) 0. ic 0) a c 0 CL0 0 0 m a) 0 'D 0 - r - 3 0 m < , ! :! M 2m Q. c

:5 '_ D 0 L 0 In - I L w 5 ul 0- - 4, 4:
CL L M Z 0 0' L OC COI L "o Z 0 Z 0 C C .0 C. C 0 r Q) 01 ir M Zu
E 0 ? C JC L 0 0 2 w 31 C 2 0 M W E ir a, c IA r a;

U) :1 Z'a m 10 la 0 0 0 _ W 0 0) In0) C L L L - . , _ - C U : L - - m -

- 6, . V, 0 U V, '0 D Qlo c w 10 ul 0 0 L L ? U) CL 4) - L 4, 0) 0
0 c U, 0 2 M 3 U) 0 0 U _ U 4; Z > L L V

0 L I m c 510 c a E 4 0 N - L C M L ID 0 0 c a m c 0, c
.C L, u C 0 0 3 .0 Co E W L C U M C :3 c -

c m c u 10 0 0 1 4) L, 0 0 L c - 1* M C 0 - r, > >
0, u 0, ol 0 L 41 ! a) M > D M . 0 a) > W a, 0 In

L M 0 0 !? IX > 0 5 u 10 wo -C 0 r- > U3 C V) Z*m 01 a) U) 0 0 V) V 10 5 L 10
0 0 OL C 4 V) 4) u -9 4) in ': '. 10 0 W . -9 z c m n
U, E 0) L M ': 0 a C > 0 Z 0 C M D 0 U

0 0 06 L W C M
E c a' r 6 cz u u tM

0 0 u > In U (L' 3 a' L r D
:3 z 0 C M 10 D In C JC 0 w 10 CL L U 0 10

0 0 x 0 0 0 L 0 JC - U Q) U tA 0 L 0-9 C 'M C >, 0 U L C X 0 L
0 jo u E E W U 3 U 00 L W -4 q U x U - 0 0 Lq 'D m CL 3 4 fa 0 z all u CL E

LA
to

CIE

0 mC0 m
L zC > c)

L C, CL C u C 4 (nC W C C-a C- c
L C-- UU- 0- CD CC m ,C z C: 0)0 E> V

a) CL C -w c cio C! C, moe C0 DOC
C-C u W, 0C 11 m L) C-C , D :VC IC c

am CC~C -mC re C-I * U C-0CCC
L -C L -Z - 4- >C C LC -. C CL LC/). C

C4 m CLC c 0 -C m) r 10 m CC-c -(n
CCC.- ZC) C) c.~ L.0 C V C a) C' L C C, >r. UCl L

a; tr - >- z-~ 0 C C C C C C C
>L C ,~C U CC) CC --E e~ C-CCla4-

- (VC CCC) C LL' C mCCC-CCC-LO CLo E cC *-C
z 1 C>CCa) CC r aC) m -UC L >CCCCU-CL V

CE C C-C > CD ' L C C U CLC C -C EC !
CE ADm cCVC0 CC m CLn C CCC a, LCL- C L UC - C8
C CC. C L- 5C)L~C -CC LCC0CMCV CCC)C C--- C.

0CC (A CM W (n - En C CU CC c CWEr L L LC C

OL-L E L -> 1C Q; IL >0 C-C '0L- C > CC) L 0C0C' -
CC -mCC C 0) N -C - mo " C o ECCU :3UC C CC E C c C UC MC10u : lc 0 C .C M- -C U LZC CC L U CC C C. -rCCC-C U, E - - V;CC L . U LC C U) C C C CCL 2 CL> l : QcE !00C. CC C C >C C CVC C C 0-. L MC U- C.C C-c C CCC LC. C C.U C L CC C D LC3CCL 0 0'. M C Z
C CC C>0 C C (n -- CCCL *C CL- C'CC C CC

MCC UC)C . C) inOC. C -C C *EC (13C~ C L C-) 0CLoL
I-C C CC L 13 '' -. C> C L - C L- C C C W E-

-C cCC C CC CC >C Q cin CC C)-lm C-eCl UC Z C C
wC-CCC) L mL CL LU0) .CCU LC) 0; C ~ --C3 C-VC C' CC -C~ VC o ,aC -VULCLEC--ECLOCMEM-> 0MCV)

C. 1CCCU MU -C V) - w 0 In CCCUC ECL0C cmU -

r-C CQC- 10-C LC (A-C C CC E CaO a- L CL
-- - 0C

ECCL UC)*CCC LC O >.C

VC C C/C 0 '- lo 0 c
aW z C) a D : C LlI lI D r O

0 E L- 4) M M4 r OC) 0 U CO C CC C
L M > C D L > CC W C CL -aj

r 'c C D a rE-C> - cC CO.a)- 0)CC- CCm>0 La - D~ 'L. 0 - a' Ce- L>U) V- -C - c

E -)
1') CL CC CMU CUCC CL C C0C L 0E U g CC CC U C C-CC O- C a-- WCC- -

U -L X' 0 L C- C) LC LCC CC M ZCC.-C

CL. L m m 3 O L -C 4CCC EC . >C CCC M- CL m I-. C- C

L(CIo CC C L C E L C C C C C C CCC

C~0 00'- C3 CL CE - C-l C > - m. CC 0 C -C -
C o E~r >C) C- . ZCC w - C C C WC CC C
C .O-r L - - .' OCCC - L) C 'a C kc..>~ L..

C M L D -C vCC C'CC CC C OUU :C C -L- OC >
U0 m -C C CLa) C) aCC C>- UC CC C ~ 0 C C -

-IU C)CC' CC LOCCC->C C I cE 0 -C > OCC CU
- L CC C /1) > O C L0 - E C U' C 1CC:CC C-

-) L/ CL > W- C0-. tC uO- C ~ C - C
C ~ ~ ~ ~ D Z -U _C-- .CC u.CC - C-EC C C - C - :C') CCC~~CV) -Zc C'~c' CE aE C CCCL Cm C.)

C 4 C)N CZ U C CC'- LC C CCC) CL Cl -1 - C c'

CC-.DC4 U 4 CU) C C M- CCCC- CC CC -E -L -- m CL' 0LU- X 00C U .- L -) U 0 LC_ DEC) CE UC CC - a C C

- 'U-C C a7 wC C ~ CCCU-C) E - CEC
CC~ ~~~~~ .C -U -0-'C-. W E - C CC C C- CC-C~~~(0CC U' C.U CE C CL.- > -) -C CC

C> -)CU -C.C "0* M>CC)C-- 0 CC C /C - - -C~ ~ C- /CO -U - .- C C-C CC CC c ~ C C '0 -3 C1 LE . -CL - -n L -C 4C c > CC C -- C CC- C> >C r C -cu >IC -'L-C CC-C > UZX/C - 4) --L U. LECC~ U) 0 M C ,CDUC
E.C 0 C L'CM a 0 CC>UO.' -_ C-C') C CC OCO U

C--U /U -Z CO - E E -CC EC 0 C U >CCC
'AU ZC (CL-- .- CC. CCvCC E C U C -C C -U CCaC C

L C C M a 0 C 0

U, 0 LC C 0 " C) LCE- a m5

c w

02 0 2 > U2 0 V

04 c -O 0'-0 .0 WU 23)L 02 a, L 0-
0 D .- 02 0 02 0 1D 0V L .a)M 0 1 2 a0 4L -O a' 21

o P L 0 0 - 0-00 > -(L 2 -* M2 0 2 0 0 V ' V, !- I L. I M L n O 0 1 0Z 4 - WX 0
> 0 ' (L00 0 :1 M - 22 0 C. L.f 0I GU2- . 0 4 0 cc , 0

cc Uao) 0..0 .*' 0>200 Igo'-0 00 -02 CW 0 02. .-L CC C4 0t E2C
0 : 0-) .L a).00 0 .00 a,..0 2. 0 .0 t 0 t 0202 0

L 0 > 02.00-. 2 a,20 0 L3 2 2 0 E2 00 '.O r U22 V0Z2U.0ML2
C0 O 0 02 ' 0 2 02 0 0 2 >' 2 0 E 0 2 0 2 02 02 ! U2 C20 C02 ; a

:3 0 3 2 2 L0 2 -C-. 0G- 02 2 - 2 02 >- 0 2.2 0 C x 0 >L

02 a2 2 (Z 2 0 0 0 0 E 0 0 1 0 0 - 0 1 0 022 C0 - 2 : 0 4 0 023 U)'l i - -03 4

2. 0 -0 - 0 0 E0- 2 0 0 2 0 .0 0 2 L0 L Z3 4-.. 0M
w -022- > -C.> .'0 I 0 2 E .U0 -0 1 20 LV -. (2.) 0O022 0L-20. 00f0~ 00.0 2. 0 c . 02.C c2 -2 2

0 1 LA00 0 3)U -0.>0L0 CM-(20(C 2L 20L2030L-20 0 :3 10 020 .

W00 0 0200U20C0E21 E 0-0 .. 02 0 ML02A 0 x 102 (2 E
!!00.22. -0 2 -00 C20 L. W20 L0 M2 _0 0 W U 0 L.-

- 0 M22. 2 . 0 _002 0L.0 2 0 2-0 2 C._0C0C. CL2 L0L02 1E M .U .a0 -- -

(L 02u4 0 0 0 02 1 02L-0 0-V . > 0 0 00 C0 0 0 (C0 U02 UM C M 0

> w20 2 0 2 . - 3 2 L 0 1 0 . 0 S X 0 0 2 2 2 ' 00 - - > (0 D > . 0 2 -
U 0I 002L * .0) > W *' C 02'D 0 L -0.0 D - .00 D02 L0 a;.2. .0 0) a) u a, 0mN 10202 'n0

L 0 - - U2 U 00 0 0 2 C -U W -. W.-02 2 -U - 00' m>-
W C W C - 0:20 2 210 * 3 - 1 0 L '1 C O L 1 0 0 2 . 0 > 0 2 2 . 0 0 2 c0. ~ - E0 2 02 a

0 ,, w C .- 0 0 -0 - - 0 20 (->00.t) 0LV0 L> 2. 1 m2.2 - 0. a(2'
-~ ~~ ~ 02 - -VI 020 in I L ..- 2 0 2 4 0. 0 2)..02 2 0 0 0 2. 00

c L) .W -C -0 02 M0 . O - 0 2.E E 2 0 0 2 (- 0 4-! 0 0 2 0) U) zD >0

0 C' .'2..V. 02- > E z02 - - LU 0200 00Z - V >lL
U 020 0 2 02- 2 - 0 0202- 0 00- CL .1 -0a 2 00

E 02E. 02 00 02 0N ' E 00 0 0 u -- 4 V)000 (N .L 02
t TO(0 00 n 02 -C> to0 C-L-0L 00 C24 02 -0. Ln 0 a m m U) 0002> 020

W20 0000 a.- 402 0- 3 U) 2.>-0 U LC 4 0x --04 a E L L 0 N 0

U' to w - m-0.-0--0 0 0 0 '-L M 02 0 - O0 00- C a)L a.M

C0- 020 ~00002200 4, 0 'a_ .0D022_"U2LO 8 --M 022 0 0 020

1(0 0-U2. E3 2.2.0 0300 L*-0C--0 M -20U)0 -2.>.'.- L. w0 00
M 2020220 C22-.2-00.200.20 .-...-. 2-0 L L L3 L 0-D
-C Z (D >>4) U 0E2.0 .. 020 4V0 0.02L-C0020202.In2E M -.. 0L0.> 0-0 -C 0

>0 10 L CL- U M0W 10 CL L 0 1.0 02 0- 04 V0400 02'2.'2 !: L L >) m

0 4 > EC .'
E E u 4 02 4

C-0 010
20 w.(' I u a0 -0 > 0
0') 0 0 *' (12 02020 02 0 >2.E
0M020.'- E.0 C WL ac 0 'D U)E C 0 2.20 W 2

02 3 1 020 C20200 ' 0 2.1020-02.-2 C--2L CD w 0202002
2.02 2-200202 0 00 0>220 -02 02 3t 0220 02 >

L2 02 2. 02t E 9 0 - 00 00--VW U fc L .202 0 >'0u W M2 202

D ;01 - 0 : 0-1 c z 0 '.-- ---- 02300022
C00-2'2 02D0 C2 'D2 0 2 M > --00-2 LV02 04 L > w2 1-00

0.2. .-.- > M0220 2 0 02.02 'DL >0 -x- -- 0 02
E2 02" 0 00 fa V 20..0 _2.-0000000 02 0 0020

01w0c u c -- L. 02 CL0 0202020-a) c 220(-01> 000 c '.a-2w>
0 2. 020 m . Ch . 0- x2 u42w2 0 0-0.-LCL

0-.020 0 020 02 w 0-00 020 2 M- - 2D0- 02 02.,> 3
000220.-->0 - 402 Q 1)202 0-0 2. 4) 02102 . 20 002 '23

02020 _2U. 0 C U- 0200- 0.0 0 u a; 1 02-.
L. " -02 - 0 ->0M2L> 0 >0 002).X -' .0 -- 0 1 --
02021022.000> v2 0 022.020 >.C002.2.-0.'. 02 >i2 02 02 -0-0

0-2 0 M CX M 02 - 0 -020% 0 10-0 -0241C 020>:: 00..--'.
L U L .2.0 a 0 u 002 1- c 0402 -z2000 00 -02 D-0! 0.z-. I- 0n

L022.20 Z - Z .. 0 0 C- 0 0. -1 U) 02200 02000- in0
-12000 02C L ZI 02 4 02 _2- ,200 ?-1- 02.0 000

0)2 1-.> L '.- a2 0C () 00 . 1.02 .. L-2 0 02C 0 022.0 ,
0202 022 0 0 - 0 (on -Cu % 020-l22 0020MIn0 0 E oV 0 0.L
(-. O L002 C- L10. 1 "1 1--: - 0-: 000 ; ! - 20 00 1

0--..-.0 0 -L C ' 40 2.22212,02030 0-22 a2-0 a E
002 Id- L 20 0 - 10-OZOm020202 ->22)2. -O 0. '00 D 4

-0 -02020 3 0 U c202 L40 0- 2 a)>0 0 04 '! -I>-> -3
0202 10.0 C 2 -0 U.'- - C2 L 2 02 000

000IM20 0>'-'- -4)L o 0 -22201X L'-.1>" 34 30, -00 04 0-
02 02220c 020 - -- . OL- 02-. 020 . 4 ? C. '2. 021-f

L 0 - l10 2 0 . 2 c- . 0 U 70 0 2- 0 w- DL0 10 ! - 1.0 02002 '-0.
02' ~ ~ ~ ~ ~ J 02k 0 0- 1.20 L200 -. ' 2120 Ow r42'0-I-2D 1

2.0 0 0 2a 0 00 L-0 3(002 22 L002- 22 022-L -- 0 (-5 20 L22 - 0 W.> /)

D/ 11 C1 Lf
fu i 4) c 0 4 nf o- 0W'

u- ;- c D -o 0 jQ1 ~ 9a 1 ,

0 C 0 - C4 C-

-c C 4 'D C C , cr Q c U
C -C 1w w C CE - (c CCD

a, C C C (a > ~ -d :-- VCC > C
I~ M-- E- 0) In- L L- 0) C OW 0!

L c VW> aC C W 0))C - CC w ~ i 0, z c u mlm
a> EC0C ID C) 14, > ~ L CO M ~ ~C -V4 Co -r 3 C

It a - C C 1 Q0 CZ -- 0)-O c C L V C) go CCC c -,

cu W. >) u> e in cCE- i LC L C -3 3 C i

-O0 0 10C 0 L C 10 . E(3 ! c,- c O C - rI, a

-u V-C (U C- C m > - CC ;CL 4 - m U .-

- ta) O 0LC- - C - - EEZ0,UC C 'a L~- Z

C L). L C X-C T C) L~CC- U D C 10 0iC-C - VC -
OC Z-V E-- VC M 0 UC C)C). L C- Z0a) W Cc C.C

0 - C D C. N Zv - C > X toW 0) u CUNL m CCC CC C- C.U C IT

0). c E .- CU W4 m C-CCL C CC- L .W 'o- W- IN C innCCCLC C
z E. -CC- >'- C2 u LC CL 4 D C0 C . a,- - a,

-- -1 CC .cn CZ CC Cm 0~)L C rZ TcC 0 -E

'- C a *C CC40- -C C CC-C -' LE CCmC t C 'E
f4i ~ - >- L) In 0 I - . -DC C- C > QCIn CCU m

Cin4CC LCIO U n 1l-Cn-C-E C 4 CV-. > CC i

CL -- C, L U 4) V C C Cu CI 0- C CC CaC.0-'L
IN~ ~ 4C C 01- 1-0 C L E C C C1 0 C CC - EC

M-C U C''- C > 0.- 0)LL EWUC -C CCjou - C

'(CC -0 ; CC L 0C 'CoC qv 10 (mC -. L EM-- C i/IW)
4 VC - -L COC ? CI C~L O-C> M-CC ic--~ C C COL -CC IS4

C ~ ~ ~ c IC W)0C 04 u CE LU C aC.C L .- C C '-
V)C. 3~ 13-CC 2 5 -CC C -. C~ 0 ~ z 0COaCL
W -on mC NC C n) L -C C C C) C C EC3 W
10 C C L) -C C -4 Z 'o 0C C U~C 0 , -0)CC C -M

-)(L L'C -C.C c 0 LECX-I C 0 CCCECUCCC)C VImC C 4C >'c

.CI OCC CC a)1 4. N C V C C C) T24 C NE~ fO '
-- I4C - LC 140-C- 0 CC E- CO- C)U - CC. to

)I C- LC C 0CC L E (A W 1- Nl CC C Q-C. W U-W C --mCm

0 ; c C C > -. L C)m(
th -fa v-)m U C , - -) CI D -L :

3 0 - S 0 0 n C N 11.0 i 4)i 4i

C v~ L C C I.

m C LC C.- 9C -C C 0. C 0 0
L CO -C 0C CCMIN U 00 CCu0

-- C1 1 C C 4 '- L C C' E C), C L
.- CCCC4.) N- CC MC (L- 4.940- 0

C- - C UC CC.7' a C' U) C-
C ~ ~ ~ g C 0 C 3 -C ClaCC '' C'4''-

U.- L- M CCI. * C CI '. L Z -E 10C L M

00E > .9-C CL C U L f U U4 0 Q 00LC
CC EC -l Ci -C -0.C 00 LV C CC 3 0 n

CC -- L L C D CEO -0 -CCC N- >-) m 0 I -
>- EC L CL CLC CU .> CC.a- O mD 0 C 0 %nN 0 -E C n.

C.- CC £1 4C4 - C LU C CC LO o l- L4
lb LC L C *- 4 U 30) . OCE L-) - C - Wt-
C L-CC L41%o OUGW 4 MfOU C L I C -C 2 .CCC(

>> 11 2 . -CrL 0 0 0-C L i uN 0 4LC w
L~n 1.L CC- CC 3 03a0 0 C L CC.-CWL

CC 0-C fo o-0 1 O C C C> WL O CC S Q, w 6) 0.I-

LC LC 0 - C *-Wx- C - AV) r CCC MO L4 Q CL LON
CCCV I L - z 0C .4 -- C C *C 0.C&M>EU0 rA. C-C

C0 C0C - :3 x- C) LLMCLW U C L- -w (L

CO E (4 C C 0 ;>C C U C - C -N CC L>
C LW - IAN c C U41 c 0'.CC L-CCC-C L 0 W O -CL CC. In

0 jCaC-CmL ZL 44,C a CC C W>.O Q -- '- -C 0-
-c- ZC L 0---WC.Q-) LZ

*'I v10 C 0U(- C W C C1 C > -C u 0 - C

>-0 > L II C 0 aC - 0CL C L - O - W
L.IC I C CCC' c 4icLC.2 0%1 0 c -~ -43.) 0

4C.--CC'Cc Cc M 4 c- MC . , C C enC CEC I-'>L2 0
C). C O N W C C C C C) - C CU C - C - C -C0

-3 CC c - 43 > N lC a- C LU CL C C -0Cw C'1L0 -r
C a CCC - L1 bC CC CC)C'c Cc C - C CO)

0 C C - D-)V C c C- -CCL U L> 0 C3C>-- C-- EW-in
V.-' u 0 Z 0 3 2~~l-' CC-u CL C mg:LC L 0 'Q

CCC n'CA0 V V 0) 11 U~e CZ C GEL 43 LO. -C 00 -L C

.1> II -. 9 L o1 0 D-IL 0
0. 0 tA 0 L) In2

CL goi

am-f
in 4 - -

w 0 03 10 cl V 0
V 0 Ix. 1 C- . .' C

* - .~ Cr- 0 0) 03.0 L 0 03 - "

03 CO D3 03 m3 ?' L -30 0 0~

00 00 11 LL CD C0 W- 0
0- W0 ow3 0 v C a c c E3 D3 a- - 4,0 03 > 3
Ic ; m' M30 L-G 4)0 -9' 0V CE 0 030

0 >0 L CL O007 L330' 0 L0 C33 03 MC(->0 3> 0

> E10 - L- 0 0 0. O 3 a LO VC C 0030

Lo N.- 03 0-3 0)(. ?- 3 3- C >C
- .E C

0l' 03 >- V 0 00L0 E 4 L' L. 0)3

0 .V) -0 0LL 00 W- 0300CL33 > .403 3
,3 0" 1 >

ID0C 00 03 -L L-'CV00 0' -0ULm0 C D -

4)3 - 3 .0 00M c0D 030 ~ 0 3 C 03I L z "1 U 0 C V o 0 1
033 C-Lr) 3 3 3)0 - 3' .0 W3 0-O03. L20

~~~-*o~~~ m-U03) 3-V E .3fl) -0C 03 0r033'. 0"

03 u3.f >3' 03 ' CC M- 03 m C 0 t 03 c 4 wU0 0) .300

E m 0 L '0030 103 3r1 x M U C 03 (-0 0 030U31 E

00 t C 03-- CW u0XC/CO .0 [1 40U 0 0 0 0 -

L >V- -C V'D uUrL0 -n UC-'U)-

CI 3 c'3 0 -4 -0"n - 'CC - ZI-q "03 mCL0a
C03U -Ci) 00030~ 03 m0- 000 C 000 -00

Co Dr L.,V0 0 N' .cV -0 U M C L - C0 M3-3 L- .J 3 03'.L

0. m . 03'03 00 43>C 0 C00..CL L33C)0

C-N. '30 m 0C E. U0-a1 0- u--LOG) CL '.-34 '-C !:
03to" ~ C 03"C 3'0 L0,~ x3 0 030 '' 3 C.

030 x0--3 40 C- M003LCEV L. CL L w Go ic0.00 0 to

LVo .C 3D~C 00 V M300 03C3' OD *U 03 L " 0 to

0-00 030 V3 030 U030 03-C 03 - m-C(C

.0 SO O 00 0 0V 03L 0 C>. CZ 03t L 3 LV 3 E

> CL C03 0V0, U-- - - - -6 0.-- 033c fa303 - C 1
003 4 m0v U- *U -. u3 03 0 33'MMV- " to3CCDc

U '0L L CLU 4)COt!.E) L *35C 4) '-C 0 CUCW LCU03CQ

OL 033>1-U 00 LC03-.M03I'to 0 U 0 10L3'mL0v

c-'0-0~004 (-NOSC.00 -(N 30

0:20 O 0 I I 4> Cr 4 4 I, CU;4 g

L L. 0)W )3 03 0a E
C a)0 x z 0m O IL - - D3 03 C 1 ) V V

IL V 0 > 3 03' .u C or -03 03 u u3 OC L 0
cr 03 C 030 C 000 W--0 0 L C- C' L M 3 E C1

-03>9 030 -' U) U zCY Z L L. C)0L . Uo OD L3 £

.L VD 030. 
m3.0 100~U LN00S333 3 10 O

C Cr-'/ ..3 n3C ZOIL(DU0mC03)0 C0 3- 0C 0~l VU
)(a 0L0- 00 CO"0 0N 00 &3 C (D 00;03- LE

L03 03 .00 0) 10-0 03 (3 4) 0 -C
.'! x01 C w -L

01, 0 10 0 0.0 LU 1 lO/

03 03 i 0 03 1.0 0 -3 4-3 ' I- v)/3 a 00i 2a30t1- -)3L3L/M

1U03 0)3U Uc 103UO.03S~0 C-4 03 W 0 41 0 00LL3f

.03V0L co 0.0C m3cm03 *- 031-UC .O 13 0 L

L (OP 0300003 C.3L ->3-4,a 1 o IM .0>- 0U3 w CC0 L0 C

0303 .0 E0 0 - 1C 00 0- L W 5. -c IF 00 L U--0 0- 60L2 .'

'03 L C.>Uc 9 303 6 C 03.N.U V - 03 LOL -0 c

L3L 01 03-V05030 033 N L003 03-0 '. c
U~~~ L-3U0 03031 C3310 03- UV (N0c 30 30

030)3 -) 3- in 0 LU C a10-340 C i.-J0c

LN c 0 m CL 00 'D u
r.0-4 *X90 0.0 0L33O0LUC

U 0 .11 O0VC- gUUn ix0UN 0 0 40000 0 30W30L

-J34 03 0C 030~0033cUc 0 .O'U 1 03 e0 -0
0 CU. 03 - 0 X403 D C033 .' 0 3uL >I u L13N i-0- 3 - :V> %.U'

1% ' 0 L u 0)
10 1/3 1- C- 4/ in - 3 C0 ,0z ) . ,

L 03 4U)i cI 0 0.0

41 L 03 4 1 0 3o

'0 L T . . 0-1-t 40L1 ;1 C-:



4- c C aC 0-

CCC > Cm - Wl >, W V - C
COO C CC4- C C >- O
- *L L 2 ..- C>~-O .-VO E C

- CC 4' UCC'' C 10 C - C E3Ca I c0 oCa Cu -
T C C 0 0 0 MC t . - Cj iU N EC- _ lC - - C-.l - 0 .

a 2vu C E : C OD 01 MCC ' E 4)C Q > .u w

U Z Cl D VC CECW CI COCC CC C - CI a

Q ~.- a0U CCCU C W X >L- C C - C > - u a -

41 . - - .C ~ - U -M In oala)lLLU C0 >: 0
2 u~/ C C L>0 m EL . 0 I L- 0CC-

C ~ ~ 4 4, D2 ECli CV C C 0 uCC - C - -1

0 D l C -1t -> 2 U- 01- V UC4 C-. 1 C -C 0
C a) C-LC 0 1 C.U -C >. - C 0al C - -L,. mC

C 71. U C C I -> ZCC D LC-C- U *-L-. cc c Q. -L-
4) : W- U L - W4; W 3 0 C - ,C C !' Ia 0 .cE-C UCf C -0 0EC - I C ~ - C)ECCL (CC o 'CO U4QIO C Z C

0)2 CL C - 0 zC 41LC z 10 3P r UO-I M :. 0b W. -.0MIC
-0 -Zi C-i UC- -;I IL,-a UC I ZCVCU VCaIn

CC3~~~~~ .1. U-2L> CC. -; 0U~ C CC . C C
InC > 0UC- C U -- 0 C ClO .1 -- C0- -Ua> 0D.-

CC 1 e C O - z U Q- C 2 -- 0 UUC2Lv -Uc .0W U) a
C C .0 O -CLZ C 3 c D---ia - CE C O O
0 0 L to 00 00cUC1- 0 qI4. 11 U' -0 a- C. C !3 MCUV ,

WC .CICCO 0 MC- Mlt L- >U C-a).aIO_ -O C C)C
i) fC - C C C C CL - C 2-- MC C LO C 41U -)- 04

E 2c >U C .C t0. CUCo CU 0C O CC - C EC 1
.0 0 - 0 C C 0 W 'n ~ 1 M- -CC iU ~

0.'C >C- -MMCLW -La-.)L GICCIC -ML-COC2CCZ-ClCl

E WMCC U .DW U ~ f :01 1- C U2 - -ma- cCI
C>U' CC CCCUOL -0 *C0 CO C-CCL

C4 U W UC . L 0CC >- OU C0 - C- CW .- C - .-0
VCl ) CULCc a 0 c t' C C 0LWu 1 0C -C.V-3 C0

'a-~0 U C 041 C-C C 0.- C 0 7CCC C-CDO)MW CO)-.-C

i 9 -U - U C -0Q: . 4)
I- X. Ufb ,CEW 1

0 C C

C ~ 0 0 C 1- C
Q. C -C C E C V- 4

Ch 7- (a 0 - C Z- C C -0 *C C C - C
Z- C- CC0 -0 E0 E C C CC -00 E i

U 0 CO c -fa CO C) C Cf aO c C C CC
C -0 E CE C) CC0 C- 0 4'L U.' -U lCw0

) ZC 00- inE EC 0C U0 1 E WCC 00- l- C C
- U I C C C W C W-- ~ ~ -O C - C - C

C~~~~~~ *- CC C C 0C U > .'CC Cl~i W U Oa
0 C L E-C i--CCCLCC.'L U - 0 C C

i-4 00 ItI D nto 0> .LM t M 00 CL 0~WC 2OOO - - C -l CUCL C 2 O C C C C

CCCL f0 ' L1Z0 UL:!O0WiZ QC~ -- - ) C C - C a

.- o CC Q. ( )U C61 EMI t -o EN-O OVC O V 0400 -C
C VaZ 0 >CO OU E - . C- C 0 UEC UC C C C L-

> -4c t C OC>LCU -C2C- CC- L 0 E 00 -) C C .CC
C 20-C 0 W .C C. UO a- C LO CCO L 0 .CCOW.CUi U).

L~~~ CC C O . L -. C - C- C 0> CL C0f' U
* ECI . - - C - 2 C CC D~ L CCCW C14- -

Cc ;; C D 10. C CL - 0 -C0 C-) fl- C-- 'CCOt
L C 02 CL CCC -C30- CC vC CCO CCC 1C C - C

- >W v'C 0 C0U 0 .. c m-CC Z 14)0 c CLc -C C OC.-Ct.C C-L

C U)0. U -0C C.CC - CCCC C' 0 MC CO C> 00 .-
(D :'OC CL CCO' CL O 0 0- C - O LL 0 0 C L

m CC 1 0 0 - C M- C L 4- EC -0 n.10 i CCC 0C- maC
6-02CC10 -- 0 444)O C -L OC . U-C -~L UC0Co 0 04 0) D L

- ID 0O CC C '0 1 c'i E I L2CC C.~ U COCCN
- * C CCOU -LCL t A-M U n n L C -) DCC 'DIa, CL 0 C 2NC 1
U'1 C L _CLL C 2 CCCC - COCCj=O 0U C~l C 9202 M L 0 ZL-- 0L

c U >L0 WE 0C 4 0 CL - 0.LC c''CUE00c V U 0 4-CaUC 'DCC
-0U '3 - C C -CCO- C c 3 i *IOU .. ULLQ U C CC)C C sr

0 E 6CU -- 0 0 -0 0 C 10 0 -' -- 2023 > 0 0 )

w L-. Q0 C 0 C L C U 0 W)0 0 C CU UL
4,1 L fC 1 0 C1

1. 41ID0Q I- i 6)D cu l

4. 4 0 L C4

r - , 00 9



10) 01 E
0)0 M-0 40

> z 0 0)C 010V 0 aV
co 0f~ Ca C V) Z 0 004

C0 C a) W l- -- C w ~ ~ a '
0 Z 40 UC - L~ 4 - o ::L; - 10 U O

Z L MV~ M 4 4C MI - V ! Dc')L- c C w cco L) D>00)) 0 ) L l N ) '4 C. DOCOM'Q0Ic0E
' 0 a;-- - L U)0- U Cl 0))0 u0 0 . - MIu 'I E' - L~C C ZN U) '-)C E 4 QCL L VC ;

4 4 LOc u .3 ;- M L 0 0 l I' 0 MI 4) ! C aO a0 10 M
C L4:-LC C. -0L- 0. CO Z0 0 2 *. >W C a 'a 0CA. a'-0~~U E M- c 01 a 0; ) L0) >C ML > I

IM ZO .3W 0) -w OC EO > 1C -0 )O 'C EZ
LO1 01.1 U..LC CL 40) c.--0 r0- . 0 0 D

a, - ) a) L0 01 C (1. U, L 0 0 M 1L3.; 4 - 7 0 C 010) L C ' E~io .LA 1 z ~ 0)-aI-V 0,40 c 0 Ua)E M1 L3 1 0 ' 0 L 4) 4 0
CC C) C C0 'L.0 O C C . -. 0 C CE 0 M L a)L O

-0 -' Ca) -- )0CC V) 3' CE0 0 0 .- 0 L L

t"I 4x4 C L-> 44 0 0 0) 0L ) 0 E01 C 00))
ainI 0CXU4 - -MIElua - 900'00)00 CE 002-L

-~~'X~ E'1 (--' ' )0Z L 0 L L C CO-r) - f
0) m 'm 0)4 00 0~ L. W' U.-)- 0.~ 03 M I'-

u2 *c 04')- > c ou 0 Ix 1. U)J 4LMI0 arV) W0 M CL 0
a1- C-0. (n 4CL > 0 t 0 a 'a VC40 M( C ,L > O

, w Z'l0-004) U) 0, Z41 a)0 )Cl 0100 a -0 0
> 'OD .C L V 140 '' C I 4) - 4 -0"0~ -oa c c 0

-1(CC EC u -- C 0 0 L aV.Ma )-04.0 0) - MI

- 4) o - U) ) A) - L ' - 0-'L CC >-)0 c-3 I.

0 1 MaC fn) -C - - 04 U3 4 ) c 11 1L~ M OC *- 0 a
0. 00)) 4)4 a)-n CCZ> M V. D'. W--.aaa-C)0)

C ) -''C -0)L M 100- 0 0)CW 001 - C C -0 .

- 000-OCC U C V> CC -r M . U )0 m.
7) :3 0)1 3 ICLOC0 C )0 O L 4 1 E 0 -4L) C L ) 1.1 04 U
C r a CL0 L C- C M- D Ml 0 c)~ r C0L) 0 0c-

IL I 0 4 MI 4 C; C L~3. M C'0L 0 D M

w 0) CI *O0 ) Caa) _.'CN 41. *CO. I 0- C u0 w
4 ix-0)01CL 5 L M 10 0 M CLC 0 MW~ ) 0 D 5 C> a v D04

0 U L n LO-0D. L-C a) Go 0)2410 M.- C) ) 0-LLC0C : "'0

> - O0 - I- . M1LI L-
0l < 4 a 4 aL: W .. 00 !9

E L - -u r EE1.! ZC M 0 -. .>0: C M' 0
L C93 0C o L M' 0. E-9 D 01 0 0 a ) 0) 0) 0

0 C3 0. -o 0.00 " .I0 0 l )

- ~ ~ L04403c L-O 0) t0; I 1.' L .~
CV~~ ~ a) Wl4 L V0) OL M C ' a i0 0.0O0C0 0m

C I - a > C C- COLu.0 0 0)II CLMaL O -0.
MO M C C CX> a)0q a) 3l ()) ' CM.C

CL M-) U C a) L L M 0)0 In w CLL 40 0) 0)
01 V O 9a) &La) 1003 000 M4 - 0 0' u 4) 0 -ar.-3 0-

1') 0 0-' 40 fl01'. -C 0CCL 0 4- (A cC C "a. z0)-
C0- a) 4L->MI5, 00 ) n -CL00E Cc -o rL c' E2 0)0)a O M

0)0~~~ -J E'-C X)a C' - 0 a 0 0 D 0 I 0 C L O ))' M "0" CL)>CD-C--Ita)1. LV4I10 L CIL-0 V) 0 0 -a' 0)N

CL 0 0C L 'a M. a 4- ) LL 00 3 0 :-4 0 ) - 01 C0000-00)4
4C D L WO" w- 0LD40.LC4E IN .C4O a0CI.40)~)I- CC

C , M n 0 L- 0)III 4 ) a - 1. C 0)'Ml M' L E- 40M 0 0 L C )
w 0) -, a)0 M o 4) go 0) L0 C , 4) INC0> ) E G LLIE-X CM>D-V 43)0 5 -Ca)~ 0 0.>t IM 4) -'CINL4L I o0. C)a )-

CL z0w) 01104 M1 -' C --. I') MC- D 0. 0>M..0of ME C - a~a
0 L3 LE 0 1 . CO. C- - 41. MI' 0 D> L LCU0 u ;Lto L a)U

C' 0) 0 40 L 0--X 0)10 C CLC L I/a N1 1 0 ' V)4a'c)L
Ca) 40 D")0'C 00 0 'I' ' '&U 0 40)aECO0)>C a

,4 !):1 C E U-4-) C .ML EO M) 0o uL 40 L W030)-CD" XX L JO)C) ; 0 40 L .' U0 tN) 0 > a 4,) 0 EC0.0'L 1
441 07 ;)MCC fV.- '- 4 0 CL"4U am ev 9 o Cm-0 0)0Do"''L ca)I-v M
>-D C-OrL 0) L) )I 04C C. V-C 2 "I -a >'Q~). XCC
-*4- m 00CL 10) 0U C-.L -W 1 Z DaD)6 a) o M0C.C - 3C0a0. DL , 41
1C 01 CL CaC E 0Ia1 1 0 I VCEL -N a) 0 C C- C oc4)00 0 L 0)0L C
C-4 9) 0 0 0 .0D'f.3' r V 04 VI' > 4) 2 0 L 0 3t LD>- 4 in4)Ma)

T U- O uI'- 0 c 41 f-ad)-- ) C OVC ) E 4 WV U) CE - V CC-D )>LLEL ; M COW--V-L a01. 0- C V) C 4 D--a)C>> 1ao- OM O
' )CL C4 L10-a .0 0 LaE) IC W Cf. -1 a)a) L01cc

0-0 ;0 C0 0OLVV 00-0. -00 OL CL&)W L' * L L a) C0)C'.w
-VCJUG ~ a'- E CI, 4 V.0 0aC 1 0 004~ a)0 *V 0 0 C C 00D
- 2 -4-00 C -Ca)C C I - )0 4 .- 0) > c '

) c . L >00 4)~ -M V--0 C> wJO.'E0oV 0CL0L 0)
ClD-CL CV IU L .D004 --) ! C 0 -) L 0 0 10 M-aa)VoV O > ) 0 L
C ( 0' C4) C.( - C 0 '-0x :) (4) -01.14D00X 0 I0)U aC 0 C La 0

0 I 0) - 4 -L u.-.- a)C 0lI 0) *-CU> 1(P0 0 D - 0 L

10. '0 4, w 0 ( VL. ' , ,0w ML V-U ML I' u).L - 4C MOC -0 -

4)-0L 0- 01,M1..0) rVIC )-' J -'0 1 CL 3 M" LI1) 0 C I '
" 'D CM4 00 r C 0 , )")MM M' 4 4Z m'' : C L 140 10C -L 0 V4 L

00041.11-0001~ ~ CEO W 0. E O0 V 0.4.j o 01 - - M0C 0- 0 0 LID04

la 0 1 0 ) ; LC :

0 0 D4 ?300 ,-' a z rUI L/ 4A L- 0>L , 4 C LO

33 L a 0.U 0 - 1C00 I t 0
4 0 4 1 ' L0 -1 4 L 4 .V -1 0 c

n L 0U. IL e1 ' D 0 n0 -v - - - - -1 -xV)0Cua- 0uc

l lx -K



/7

REPORT DOCUMENTATION PAGE

1. Recipient's Reference 2. Originator's Reference 3. Further Reference 4. Security Classification
of Document

AGARD-LS- 143 ISBN 92-835-1510-2 UNCLASSIFIED

5. Originator Advisory Group for Aerospace Research and Development
North Atlantic Treaty Organization
7 rue Ancelle, 92200 Neuilly sur Seine, France

6. Title
FAULT TOLERANT HARDWARE/SOFTWARE ARCHITECTURE
FOR FLIGHT CRITICAL FUNCTION

7. Presented on 1-2 October 1985 in Edwards, USA, 17-18 October 1985 Copenhagen.

Denmark. and 21-22 October 1985 in Athens, Greece.

8. Author(s)/Editor(s) 9. Date
Various September 1985

10. Author's/Editor's Address 1!. Pages

Various i 50

12. Distribution Statement This document is distributed in accordance with AGARD

policies and regulations, which are outlined on the
Outside Back Covers of all AGARD publications.

13. Keywords/Descriptors

Computer systems programs Errors
Computer systems hardware Tolerances (mechanics)
Flight control

14. Abstract

> ThisLecture Series is intended tofde basic concepts and theories in the design of fault-
tolerant architectures for flight critical systems t is intten7dTeeover experience with flight
tested fly-by-wire systems as well as issues in redundancy management of synchronous and

asynchronous approaches. It will specifically address the individual aspects of software fault
tolerance, actuation fault tolerance, reliable data communication, and multi-computer operation
using the ADA language. f r-r I , 7 .." ' v)

This Lecture Series, sponsored by the Guidance and Control Panel, has been implemented by
the Consultant and Exchange Programme of AGARD.

-01



-7L -7

~ SE E -

E E4

L a - L LJ

< C--.

<S

q ~ CL7

< -p --o <

LLI rr- < LL; r- -

LU0 ,u C) -C -

< 0

< < cl <LL E . <<0 <,2LL mo ~L .

i-r

C r. Z. 2

E SE E E
1 0 .-- 0 S

LLLLU~

,a LJ- 0 0 q LU.C 0
~ <Q

ID C. 72

< 0

's a: LL
< 7 gr < 7 "a

0<

0- 9 j;i

< ~. < u

k <. ~ 4
__ __ __ t0V0-i E z

t . -.-. -



.7.

E E

r- LL

c Ii

C6

Aj -



NATO OTAN
NATO OTANDISTRIBUTION OF UNCLASSIFIED

7 RUE ANCELLE - 92200 NEUILLY-SUR-SEINE

FRANCE AGARD PUBLICATIONS

Telephone 745.08.10 • Tex 610176

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD
publications is made to AGARD Member Nations through the following National Distribution CentresFurther copies are sometimes
available from these Centres. but if not may be purchased in Mircrofiche or Photocopy form from the Purchase Agencies listed below

NATIONAL DISTRIBUTION CENTRES
BELGIUM ITALY

Coordonnateur AGARD - VSL Aeronautica Militare
Etat-Major de la Force Aenenne Ufficio del Delegato Nazionale ail'AGARD
Ouartier Reine Elisabeth 3 Pia ,,ae Adenauer
Rue d'Evere. I 140 Bruxelles 00144 Roma/EUR

CANADA LUXEMBOURG
Defence Scientific Information Services See Belgium
Dept of National Defence NETHERLANDS
Otta% a. Ontario K I A 0K2 Netherlands Delegation to AGARD

DENMARK National Aerospace Laboratory. NLRDENMARKP.O. Box 126
Danish Defence Reearch Board 2600 AC Delft
Ved ldraetsparken 4
2100 Copenhagen 0 NORWAY

Norwegian Defence Research Establishment
FRANCF Attn: Biblioteket

O.N.E.R.A. (Direction) P.O. Box 25
29 Avenue de la Division Leclerc N-2007 Kjeller
92321 Chitifon PORTUGAL

GERMANY Portuguese National Coordinator to AGARD
Fachinformationszentrum Energie, Gabinete de Estudos e Programas
Phvsik. Mathematik GmbH CLAFA
Kernforschungszentrum Base de Alfragide
D-7514 Eggenstein-Leopoldshafen Alfragide

2700 Amadora
GREECE TURKEY

Hellenic Air Force General Staff Department of Research and Development (ARGE)
Research and Development Directorate Ministry of National Defence, Ankara
Holargos. Athens

UNITED KINGDOM
ICELAND Defence Research Information Centre

Director of Aviation Station Square House
c/o Flugrad St Mary Cray
Reyjavik Orpington. Kent BR5 3RE

UNITED STATES
National Aeronautics and Space Administration (NASA)
Langley Research Center
M/S 180
Hampton. Virginia 23665

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD
STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE

DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

PURCHASE AGENCIES

Microfiche or Photocopy Microfiche Microfiche or Photocopy
National Technical ESA/Information Retrieval Service British Library Lending
Information Service (NTIS) European Space Agency Division
5285 Port Royal Road 10, rue Mario Nikis Boston Spa, Wetherby
Springfield 75015 Paris, France West Yorkshire LS23 7BQ
Virginia 22161, USA England

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, tide, author or editor, and
publication date. Requests to NTIS should include the NASA accession report number. Full bibliographical references and abstracts of

AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements (GRA)
published by NASA Scientific and Technical published by the National Technical
Information Branch Information Services, Springfield
NASA Headquarters (NIT-40) Virginia 22161. USA
Washington D.C. 20546, USA

Phnted by Specieiised Ihindttg Services Limited
40 Chigwell Lane, Loughton, Essex IGIO 37Z

ISBN 92-835-1510-2

. ..... .. _ _ _ _ _ L I




